تأثیر مایه‌کوبی با قارچ Piriformospora indica بر برخی ویژگی‌های رویشی، فیزیولوژیکی، بیوشیمیایی و میزان اسانس گیاه مرزنجوش (Origanum vulgare L. ssp. vulgare)

نوع مقاله : مقاله پژوهشی


1 دانش‌آموخته دکتری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دکتری، گروه تولید متابولیت‌های ثانویه در سامانه‌های زیستی، جهاد دانشگاهی واحد آذربایجان‌غربی، ارومیه، ایران؛ دانش‌آموخته دکتری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استاد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

4 استادیار، گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران


قارچ Piriformospora indica از جمله میکروارگانیسم‌های محرک رشد است که می‌تواند باعث تحریک رشد و افزایش تحمل گیاه در شرایط نامساعد محیط گردد. به‌منظور بررسی تأثیر همزیستی گیاه مرزنجوش (Origanum vulgare L. ssp. vulgare) با قارچ P. indica بر برخی ویژگی‌های رویشی، فیزیولوژیکی، بیوشیمیایی و جذب عناصر غذایی و میزان اسانس گیاه یک آزمایش گلدانی در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. تیمارها شامل شاهد (بدون مایه‌کوبی) و مایه‌کوبی با قارچ P. indica بودند. نتایج نشان داد که مایه‌کوبی با P. indica موجب افزایش معنادار ویژگی‌های رشدی، شاخص کلروفیل، میزان فنل‌ کل و فلاونوئید کل، درصد اسانس و جذب عناصر غذایی آهن، پتاسیم و فسفر گردید. بیشترین و کمترین مقادیر عملکرد وزن تر اندام هوایی (3.92 و 3.06 گرم در گیاه)، عملکرد ماده خشک اندام هوایی (1.12 و 0.78 گرم در گیاه)، شاخص کلروفیل (47 و 42.23)، فنل کل (4.88 و 2.96 میلی‌گرم اسید گالیک در وزن تر)، فلاونوئید کل (0.52 و 0.23 میلی‌گرم کوئرستین در وزن تر)، محتوی اسانس (1.43% و 1.01%)، فسفر (0.41% و 0.35%)، پتاسیم (3.8% و 2.6%) و آهن (219 و 180 میلی‌گرم در کیلوگرم) به‌ترتیب در گیاهان مایه‌کوبی شده با قارچ و گیاهان مایه‌کوبی نشده مشاهده گردید. مایه‌کوبی با P. indica میزان ترکیب‌های اصلی اسانس مانند کارواکرول و تیمول را کاهش و در مقابل میزان ترکیب‌های پارا-سیمن، کارواکرول متیل اتر و گاما-ترپینن را نسبت به شاهد افزایش داد. در مجموع یافته‌های این تحقیق نشان داد که مایه‌کوبی با میکروارگانیسم‌های محرک رشد می‌تواند منجر به بهبود ویژگی‌های مورفولوژیکی و فیتوشیمیایی گیاه دارویی مرزنجوش از طریق بهبود جذب عناصر غذایی گردد.



- Achatz, B., Rüden, S.V., Andrade, D., Neumann, E., Kühnemann, J.P., Kogel, K.H., Philipp, F. and Waller, F., 2010. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil, 33:7-59.
- Akrayi, H.F., Salih, R.M. and Hamad, P.A., 2015. In vitro screening of antibacterial properties of Rhus coriaria and Origanum vulgare against some pathogenic bacteria. Aro-The Scientific. Journal of Koya University, 3(2): 35-41.
- Alraey, D.A., Haroun, S.A., Omar, M.N., Abd-ElGawad, A.M., El-Shobaky, A.M. and Mowafy, A.M., 2019. Fluctuation of essential oil constituents in Origanum syriacum subsp. sinaicum in response to plant growth promoting bacteria. Journal of Essential Oil Bearing Plants, 22(4): 1022-1033.
- Arora, M., Saxena, P.M.Z., Abdin, M.Z. and Varma, A., 2017. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis, 75: 103-112.
- Aslani, Z., Hassani, A., Abdollahi Mandoulakani, B., Barin, M. and Maleki, R., 2021. Effect of plant growth-promoting microorganism’s inoculation on some growth and physiological parameters and nutrients content of sage (Salvia officinalis) under salinity stress conditions. Applied Soil Research, 9(3): 104-122.
- Aslani, Z., Hassani, A., Rasouli-Sadaghiani, M., Esmailpour, B. and Rohi, Z., 2014. Effects of arbuscular mycorrhizal (AM) fungi on essential oil content and nutrients uptake in basil under drought stress. Journal of Medicinal Plants and By-product, 3(2): 147-153.
- Bharti, N., Barnawal, D., Awasthi, A., Yadav, A. and Kalra, A., 2014. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum, 36: 45-60.
- Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3): 178-182.
- Cotteni, A., 1980. Methods of plant analysis: 64-100. In: Westerman R.L., (Ed.). Soil and Plant Testing. FAO Soil Bulletin, 784p.
- Dehghani Bidgoli, R., Azarnezhad, N., Akhbari, M. and Ghorbani, M., 2019. Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agriculture and Food Security, 8(2): 1-7.
- Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd-Allah, E.F. and Hashem, A., 2017. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8: 1-14.
- Evelin, H., Kapoor, R. and Giri, B., 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104(7): 1263-1280.
- Ghorbani, A., Razavi, S. M., Omran, V.O.G. and Pirdashti H., 2018. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology, 65(6):898-907.
- Gonceariuc, M., Balmush, Z., Benea, A., Barsan, V. and Sandu, T., 2015. Biochemical diversity of the Origanum vulgare ssp. vulgare L. and Origanum vulgare ssp. hirtum (link) ietswaart genotypes from Moldova. Journal of The American Society for Microbiology, Life Sciences, 2(326): 92-100.
- Gosal, S.K., Kalia, A. and Varma, A., 2013. Piriformospora indica: Perspectives and retrospectives: 53-77. In: Varma, A., Kost, G. and Oelmüller, R., (Eds.). Piriformospora indica: Sebacinales and Their Biotechnological Applications (Soil Biology, 33). Springer-Verlag Berlin Heidelberg Germany, 410p.
- Gosal, S.K., Karlupia, A., Gosal, S.S. Chhibba, M. and Varma, A., 2010. Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian Journal of Biotechnology, 9: 289-297.
- Gündüz, G.T., Gönül, Ş.A. and Karapınar, M., 2010. Efficacy of oregano oil in the inactivation of Salmonella typhimurium on lettuce. Food Control, 21(4): 513-517.
- Hashem, A., Alqarawi, A.A., Radhakrishnan, R. and Al-Arjani, A.F., 2018. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 25(6): 1102-1114.
- Johnson, J.M., 2014. The role of cytosolic calcium signaling in beneficial and pathogenic interactions in Arabidopsis thaliana. PhD Thesis. Friedrich-Schiller-University Jena, Germany.
- Kadian, N., Yadav, K., Badda, N. and Aggarwal A., 2013. AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. under salt stress. Russian Agricultural Sciences, 39: 321-329.
- Kari Dolatabadi, H., Mohammadi Gol Tapeh, E., Moeini, A. and Verma, A., 2012. Evaluation of the effect of concentration of auxin and fungi Piriformospora indica and Sebacina vermifera the peppermint (Mentha piperita) and thyme (Thymus vulgaris) in vitro. Journal of Medicinal Plants, 2(9): 13-22.
- Khademian, R., Asghari, B., Sedaghati, B. and Yaghoubian, Y., 2019. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): physio-biochemical properties, fatty acids composition and secondary metabolites content. Industrial Crops and Products, 136: 129-139.
- Khalvandi, M., Amerian, M., Pirdashti, H., Baradaran, M. and Golami A., 2017. Piriformospora indica symbiotic effect on the quantity and quality of essential oils and some physiological parameters of peppermint (Mentha piperita) under salt stress. Journal of Plant Process and Function, 6(21): 169-184.
- Mensah, R.A., Li, D., Liu, F., Tian, N., Sun, X., Hao, X. and Cheng, C., 2020. Versatile Piriformospora indica and its potential applications in horticultural crops. Horticultural Plant Journal, 6(2): 111-121.
- Mulvaney, R.L., 1996. Nitrogen-inorganic forms: 1167-1184. In: Sparks D.L., Page, A.L., Helmke, P.A. and Loeppert, R.H., (Ed.). Methods of Soil Analysis-Part 3. Chemical Methods, John Wiley & Sons, 1421p.
- Nooshcom, A., Majnoon Hosseini, N., Hadian, J., Jahansuz, M.R., Khavazi, K., Salehnia, A.N. and Hedayatpour, S., 2015. Investigation of the effect of bio-chemical fertilizers on the quantitative and qualitative characteristics of Satureja khuzistanica Jamzad. Journal of Crop Production, 8(4): 87-103.
- Oniga, I., Cristina Puscas, C. and Silaghi-Dumitrescu, R., 2019. Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules, 23: 1-14.
- Pezzani, R., Vitalini, S. and Iriti, M., 2017. Bioactivities of Origanum vulgare L.: an update. Phytochemistry Reviews, 16(6): 1253-1268.
- Philips, J. and Hayman, D., 1970. Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158-161.
- Rahmani Samani, M., Pirbalouti, A.G., Moattar, F. and Golparvar, A.R., 2019. L-Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Industrial Crops and Products, 137: 1-8.
- Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. and Oelmüller, R., 2005. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starchdegrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. Journal of Biological Chemistry, 280: 2641-2647.
- Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299: 152-178.
- Tyagi, J., Varma, A. and Pudake, R.N., 2017. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought. European Journal of Soil Biology, 81: 1-10.
- Vadassery, J., Ritter, C. and Venus, Y., 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions, 21: 1371-1383.
- Van Loon, L.C., 2007. Plant response to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119: 243-254.
- Varma, A., Sheramati, I. and Tripathi, S., 2012. The symbiotic fungus Piriformospora indica. Review:
231-254. In: Hock, B., (Ed.). The Mycota: Fungal Associations. Berlin: Springer, 406p.
- Verma, S., Varma, A., Rexer, K.H., Hassel, A., Kost, G., Sarbhoy, A. and Franken, P., 1998. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90(5): 896-903.
- Weiss, M., Selosse, M.A., Rexer, K.H., Urban, A. and Oberwinkler, F., 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research, 108(9): 1003-1010.
- Yun, P., Xu, L., Wang, S., Shabala, L., Shabala, S. and Zhang, W.Y., 2018. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regulation, 86(2): 323-331.
- Zarea, M.J., Hajinia, S., Karimi, N., Mohammadi, G.E., Rejali, F. and Varma, A., 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45: 139-146.
- Zhang, X.L., Guo, Y.S., Wang, C.H., Li, G.Q., Xu, J.J., Chung, H.Y. and Wang, G.C., 2014. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152: 300-306.