همکاری با انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار، گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استادیار، گروه محیط‌زیست، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

4 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

5 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

به‌منظور بررسی اثرات قارچ‌های میکوریز بر خصوصیات رشد، فیزیولوژی و عملکرد اسانس گیاه آویشن باغی (Thymus vulgaris L.) در شرایط تنش سرب، یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار در گلخانه پژوهشی دانشگاه محقق اردبیلی در سال 1397 اجرا شد. تیمارهای آزمایشی شامل سطوح مختلف فلز سنگین سرب (0، 200 و ppm400) و تلقیح با قارچ میکوریزا (بدون تلقیح، تلقیح با Funneliformis mosseae و Claroideoglomus etunicatum) بودند. نتایج نشان داد که در مقایسه با شاهد، با افزایش غلظت سرب در خاک ارتفاع گیاه (40.56%)، تعداد برگ (36.09)، درصد وزن خشک ساقه (43.50%)، درصد اسانس (40%) و ثبات غشای سلولی (16.14%) در گیاه به‌طور معنی‌داری کاهش یافتند در حالی‌که میزان پرولین (51.72%) و فعالیت کاتالاز (45%) برگ افزایش یافتند. تلقیح گیاه آویشن با قارچ میکوریزا در افزایش شاخص‌های رویشی در حضور عنصر سنگین سرب مؤثر بود به‌طوری که هر دو گونه قارچ F. mosseae و C. etunicatum تعداد برگ را به‌ترتیب 66.20 و 9.55% نسبت به شاهد افزایش دادند. همچنین، تلقیح با قارچ F. mosseae در شرایط تنش شدید سرب (ppm400)، میزان پرولین برگ (11.49%)، فعالیت آنزیم پراکسیداز (8.8%)، کلروفیل b (21%)، کلروفیل کل (70.43%)، کاروتنوئید (19.6%) و درصد اسانس (55%) را نسبت به شاهد افزایش داد. به‌طور کلی، هر دو گونه قارچ میکوریزا در رفع اثرات سمّیت سرب مؤثر بودند و F. mosseae از عملکرد بهتری به‌ویژه در مورد صفات مورفولوژیک و عملکرد اسانس برخوردار بود. با توجه به اثرات منفی عناصر سنگین در سلامت انسان، توصیه استفاده از قارچ‌های میکوریزی برای کاهش جذب فلزات سنگین در گیاهان باید با رعایت بیشتر همه جوانب ازجمله نوع گونه قارچ و گیاه و حجم و نوع آلودگی صورت گیرد.

کلیدواژه‌ها

موضوعات

- Alidadi Khaliliha, M., Dordipour, E. and Barani Motlagh, M., 2016. Interactive effect of iron and lead on growth and their uptake in Cress (Lepidium sativum L.). Journal of Soil Management and Sustainable Production, 5(4): 41-59.
- Alloway, T.P. and Alloway, R.G., 2010. Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106: 20-29.
- Andrade, S.A.D., Silveira, A.P.D., Jorge, R.A. and Abreu, M.F.D., 2009. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. International Journal of Phytoremediation, 10: 1-13.
- Ardakani, M.R., Mazaheri, D., Majd, F. and Normohamadi, G., 2010. Study mycorrhiza and Streptomyces efficiency and different levels of phosphorus, on grain yield and some characters of Wheat. Iranian Journal of Crop Sciences, 2(2): 17-28.
- Arnon, A.N., 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121.
- Bafeel, S., 2010. Physiological and biochemical aspects of tolerance in Lepidium sativum (cress) to lead toxicity. Catrina: The International Journal of Environmental Sciences, 5(1): 1-7
- Bahadori, F., Sharifi Ashorabadi, E., Mirza, M., Matinizade, M. and Abdosi, V., 2014. Interactive effect of rhizosphere micro-organisms on nutrient uptake and essential oil yield of Thymus daenensis. Plant production journal, 5(2): 23-34.
- Bates, L.S., Waldern, R.P. and Teave, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
- Bolandnazar, S., Aliasgarzad, N., Neishabury, M. and Chaparzadeh, N., 2007. Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia horticulturae 114: 11-15.
- Carpio, L.A., Davies, F.T. and Arnold, M.A., 2005. Arbuscular mycorrhizal fungi, organic and inorganic controlled- release fertilizers: effect on growth and leachate of container- grown Bush morning glory (Ipomoea carnea sp. Fistulosa) under high production temperatures. Journal of the American Society for Horticultural Science, 130(1): 131-139.
- Cenkci, S., Cioerci, I.H., Yildiz, M., Oezay, C., Bozdao, A. and Terzi, H., 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental Experimental Botany, 67: 467-470.
- Chin, L., 2007. Investigations into Lead (Pb) Accumulation in Symphytum officinale L.: A Phytoremediation Study. A thesis of Doctor of Philosophy in Plant Biotechnology School of Biological Sciences, University of Conterbury.
- Farshian, S., Khara, J. and Malekzadeh, P., 2007. Effect of arbuscular mycorrhizal (G. etunicatum) fungus on antioxidant enzymes activity under zinc toxicity in lettuce plants. Pakistan Journal of Biological Sciences, 10(11): 1865-1869.
- Fatemi, H., Esmaielpour, B., Sefidkon, F., Soltani A.A. and Nematollahzadeh, A., 2020: How mycorrhiza symbiosis help coriander (Coriandrum sativum L.) plants grow better under contaminated soil?. Journal of Plant Nutrition, 22: 140-156.
- Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and antioxidant machinert in abiotic stress in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930.
- Gonzalez-Chavez, M.C., Carrillo-Gonzalez, R., Wright, S.F. and Nichols, K., 2004. The role of glomalin, a protein produced by Arbuscular mycorrhizal fungi in sequestering potentially toxic elements. Environmental Pollution, 130: 317-323.
- Gottesfeld, P., Were, F.H., Adogame, L., Gharbi, S., San, D., Nota, M.M. and Kuepouo, G., 2018. Soil contamination from lead battery manufacturing and recycling in seven African countries. Environmental Research, 161: 609-614.
- Gupta, A.P., Dhar, J.K., Sharma, G., Ram, G. and Bedi, Y.S., 2010. Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in rhizome of Zingiber officinale collected from different locations of North Western Himalayas by Atomic Absorption Spectroscopy. Food Chemical Toxicology Journal, 48(10): 2966-2971.
- Hildebrandt, U., Regvar, M. and Bothe, H., 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68: 139-146.
- Hu, J., Chan, P.T., Wu, F., Wu, S., Zhang, J., Lin, X. and Wong, M.H., 2013. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Applied Soil Ecology, 63: 29-35.
- Hu, J., Wang, H., Wu, F., Wu, S., Cao, Z., Lin, X. and Wong, M.H., 2014. Arbuscular mycorrhizal fungi influence the accumulation and partitioning of Cd and P in bashfulgrass (Mimosa pudica L.) grown on a moderately Cd-contaminated soil. Applied Soil Ecology, 73: 51-57.
- Huang, Z., Pan, X.D., Wu, P.G., Han, J.L. and Chen, Q., 2014. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control, 36(1): 248-252.
- Irigoyen, J., Einerich, D. and Sánchez-Díaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84: 55-60.
- Jayakumar, K., Jaleel, C.A. and Vijayarengan, P., 2007. Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turkish Journal of Biology, 31: 127-136.
- Kapoor, A. and Viraraghavan, T., 1995. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewater. BioresourceTechnology, 53: 195-206.
- Kapoor, R., Chaudhary, V. and Bhatnagar, A., 2007. Effect of the arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17: 581-587.
- Kapoor, R., Giri, B., Krishna, G. and Mukerji, I., 2004. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93: 07-311.
- Kar, M. and Mishra, D., 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiology, 57(2): 315-319.
- Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K. and Novak, J., 2006. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16: 443-446.
- Koltai, H., Meir, D., Shlomo, E., Resnick, N., Ziv, O., Wininger, S., Ben-Dor, B. and Kapulnik, Y., 2008. Exploiting arbuscular maycorrhizal technology in different cropping systems under greenhouse conditions in semi-arid regions. Acta Horticulturae, 797: 223-228.
- Kormanik, P.P. and McGraw, A.C., 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots: 37-45. In: Schenck, N.C., (Ed.). Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, 244p.
- Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D. and Kochian, L.V., 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51: 71-79.
- Luo, J., Li, X., Jin, Y., Traore, I., Dong, L., Yang, G. and Wang, Y., 2020. Effects of arbuscular mycorrhizal fungi glomus mosseae on the growth and medicinal components of dysosma versipellis under copper stress. Bulletin of Environmental Contamination and Toxicology, 107(5): 924-930.
- Maehly, A. and Chance, B., 1955. Assay of catalases and peroxidases. Methods of Biochemical Analysis, 1: 357-424.
- Mishra, S., Srivastava, S., Tripathi, R., Kumar, R., Seth, C. and Gupta, D., 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6): 1027-1039.
- Mozaffarian, V., 2013. Indentification of Medicinal and Aromatic Plants of Iran. Farhang Moaser, Tehran, 1444p.
- Nazir, R., Khan, M., Masab, M., Rehman, H.U., Rauf, N.U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., Rafeeq, M. and Shaheen, Z., 2015. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from tanda dam kohat. Journal of Pharmaceutical Sciences and Research, 7(3): 89-97.
- Opaluwa, O.D., Aremu, M.O., Ogbo, L.O., Abiola, K.A., Odiba, I.E., Abubakar, M.M. and Nweze, N.O., 2012. Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State, Nigeria. Advnced and Applied Science and Research, 3: 780-784
- Pidatala, V.R., Li, K., Sarkar, D., Wusirika, R. and Datta, R., 2018. Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress. Chemosphere, 193: 903-911.
- Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M. and Da, P., 2010. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass (Chrysopogon zizanioides). Journal of Hazardous Materials, 177: 465-474.
- Rady, M.M. and Osman, A.Sh., 2012. Response of growth and antioxidant system of heavy metal-contaminated tomato plants to 24-epibrassinolide. African Journal of Agricultural Research, 7(21): 3249-3254.
- Rahbari, A., Fatemi, H., Esmaielpour, B., Rizwan, M. and Soltani A.A., 2020. Lead (Pb)-resistant bacteria inhibit Pb accumulation in dill (Anethum graveolens L.) by improving biochemical, physiological, and antioxidant enzyme response of plants. Environmental Science and Pollution Research, 24: 165-181.
- Redmann, R., Haraldson, J. and Gusta, L., 1986. Leakage of UV‐absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum, 67: 87-91.
- Rohani, N., Daneshmand, F., Vaziri, A., Mahmoudi, M. and Saber-Mahani, F., 2019. Growth and some physiological characteristics of Pistacia vera L. cv Ahmad Aghaei in response to cadmium stress and Glomus mosseae symbiosis. South African Journal of Botany, 124: 499-507.
- Ruley, A.T., Sharma, N.C., Sahi, S.V., Singh, S.R. and Sajwan, K.S., 2006. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environmental pollution, 144: 11-18.
- Shackira, A. and Puthur, J.T., 2017. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L. International Journal of Phytoremediation, 19: 319-326.
- Sharma, P. and Dubey, R.S., 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1): 35-52.
- Tabrizi, L., Mohammadi, S., Delshad, M. and Moteshare Zadeh, B., 2015. Effect of arbuscular mycorrhizal fungi on yield and Phytoremediation performance of Pot Marigold (Calendula officinalis L.) under heavy metals stress. International Journal of Phytoremediation, 17: 1244-1252.
- Tan, S.Y., Jiang, Q., Zhuo, F., Liu, H., Wang, Y.T., Li, S.S., Ye, Z.H. and Jing, Y.X., 2015. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS ONE, 10: 1-16.
- Topalov, V. and Zheljazkov, V., 1991. Effect of harvesting stages on the yield of fresh material, essential oil, and planting material from Mentha piperita Huds. and Mentha arvensis L. Herba Hungarica. 30(1-2): 60-67.
- Wang, C., Tian, Y., Wang, X., Geng, J., Jiang, J. and Yu, H., 2010. Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology, 19: 1130-1139.
- Wojas, S., Ruszczyńska, A., Bulska, E., Wojciechowski, M. and Antosiewicz, D.M., 2007. Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environmental Pollution, 147: 584-592.
- Wu, Q.S. and Xia, R.X., 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163: 417-425.
- Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J. and Tang, M., 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One, 10(12): e0145726.
- Zaidi, A. and Khan, M.S., 2006. Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-bradyrhizobium symbiosis. Turkish Journal of Agriculture and Forestery, 30: 223-230.
- Zhang, X.F., Hu, Z.H., Yan, T.X., Lu, R.R., Peng, C.L., Li, S.S. and Jing, Y.X., 2019. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicology and Environmental Safety, 171: 352-360.
- Zheljakov, V.D., Jeliazkova, E.A., Kovacheva, N. and Dzhurmanski, A., 2008. Metal uptake by medicinal plant species grown in soils contaminated by smelter. Environmental and Experimental Botany, 64: 207-216.