- Balusamy, S.R.D., Rahimi, S., Sukweenadhi, J., Kim, Y.J. and Yang, D.C., 2015. Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increases terpenoid biosynthesis in Panax ginseng. Plant Cell, Tissue and Organ Culture, 123(2): 341-348.
- Broekaert, W.F., Delauré, S.L., De Bolle, M.F. and Cammue, B.P., 2006. The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology, 44: 393-416.
- Creelman, R.A. and Mullet, J.E., 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences, 92(10): 4114-4119.
- Crombie, L., 1995. Chemistry of pyrethrins: 123-193. In: Casida, J.E. and Quistad, G.B., (Eds.). Pyrethrum Flowers: Production, Chemistry, Toxicology, and Uses. Oxford University Press, New York, 384p.
- Donnell, P.J.O., Calvert, C., Atzorn, R. and Wasternack, C.H.M.O., 1996. Ethylene as a signal mediating the wound response of tomato plants. Science, 274(5294): 1914-1917.
- Gandinger, C.B., 1933. Description and history of pyrethrum. Pyrethrum Flowers. Minneapolis. Minesota, McLaughlin Gormley King Compani. 4p.
- Gao, X.P., Wang, X.F., Lu, Y.F., Zhang, L.Y., Shen, Y.Y., Liang, Z. and Zhang, D.P., 2004. Jasmonic acid is involved in the water‐stress‐induced betaine accumulation in pear leaves. Plant, Cell & Environment, 27(4): 497-507.
- Kikuta, Y., Ueda, H., Nakayama, K., Katsuda, Y., Ozawa, R., Takabayashi, J., Hatanaka, A. and Matsuda, K., 2011. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant and Cell Physiology, 52(3): 588-596.
- Kwon, S.J., Jin, H.C., Lee, S., Nam, M.H., Chung, J.H., Kwon, S.I., Ryu, C.M. and Park, O.K., 2009. GDSL lipase‐like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. The Plant Journal, 58(2): 235-245.
- Matsuda, K., Kikuta, Y., Haba, A., Nakayama, K., Katsuda, Y., Hatanaka, A. and Komai, K., 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry, 66(13): 1529-1535.
- Memelink, J., Verpoorte, R. and Kijne, J.W., 2001. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6(5): 212-219.
- Mrak, E.M., 1973. Advantages and disadvantages of pyrethrum: 307-311. In Casida, J.E., (Ed.). Pyrethrum: The Natural Insecticide. New York, Academic Press, 347p.
- Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C., 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 140: 249-262.
- Namdeo, A.G., 2007. Plant cell elicitation for production of secondary metabolites: a review. Pharmacognosy Reviews, 1(1): 69-79.
- Olofsson, L., Engström, A., Lundgren, A. and Brodelius, P.E., 2011. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biology, 11: 45.
- Park, J.H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A. and Feyereisen, R., 2002. A knock‐out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. The Plant Journal, 31: 1-12.
- Ramakrishna, A. and Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11): 1720-1731.
- Rivera, S.B., Swedlund, B.D., King, G.J., Bell, R.N., Hussey, C.E., Shattuck-Eidens, D.M., Wrobel, W.M., Peiser, G.D. and Poulter, C.D., 2001. Chrysanthemyl diphosphate synthase: Isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proceedings of the National Academy of Sciences, 98(8): 4373-4378.
- Ruiz-May, E., De-la-Peña, C., Galaz-Ávalos, R.M., Lei, Z., Watson, B.S., Sumner, L.W. and Loyola-Vargas, V.M., 2011. Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots. Plant and Cell Physiology, 52(8): 1401-1421.
- Soderlund, D.M. and Knipple, D.C., 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6): 563-577.
- Tamogami, S., Rakwal, R. and Agrawal, G.K., 2008. Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochemical and Biophysical Research Communications, 376(4): 723-727.
- Wasternack, C. and Parthier, B., 1997. Jasmonate-signalled plant gene expression. Trends in plant Science, 2: 302-307.
- Xu, Y.I., Chang, P.F.L., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M. and Bressan, R.A., 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. The Plant Cell, 6: 1077-1085.
- Yang, D., Ma, P., Liang, X., Wei, Z., Liang, Z., Liu, Y. and Liu, F., 2012. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. Physiologia Plantarum, 146: 173-183.
- Zhao, J., Davis, L.C. and Verpoorte, R., 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23: 283-333.
- Zhou, M.L., Zhu, X.M., Shao, J.R., Wu, Y.M. and Tang, Y.X., 2010. Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied Microbiology and Biotechnology, 88: 737-750.