همکاری با انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی ومهندسی فضای سبز دانشگاه فردوسی مشهد، استان خراسان رضوی، ایران.

2 دانشیار و عضو هیات علمی گروه علوم باغبانی ومهندسی فضای سبز دانشگاه فردوسی مشهد، استان خراسان رضوی، ایران.

3 استادیار، و عضو هیات علمی گروه علوم باغبانی ومهندسی فضای سبز دانشگاه فردوسی مشهد، استان خراسان رضوی، ایران.

چکیده

سابقه و هدف: پونه (.Mentha longifolia L) از خانواده نعناع (Laminaceae) به صورت خودرو در مناطق مرطوب مثل حاشیه رودخانه‌ها رشد می‌کند و کشت آن در مزارع و گلخانه‌ها نیاز به آب با کیفیت دارد. شوری آب و خاک یکی از بزرگترین معضلات و مشکلات کشاورزی در مناطق گرم و خشک است. در چنین مناطقی شوری خاک و کمبود آب عامل اصلی کاهش رشد و عملکرد محصولات کشاورزی محسوب می‌شود. شناسایی و استفاده از اکوتیپ‌ها و ارقام مقاوم به تنش شوری می‌تواند به شکل مناسبی از افت تولید جلوگیری نماید. هدف این مطالعه بررسی تاثیر سطوح مختلف شوری آب بر عملکرد صفات مورفولوژیکی و فیزیولوژیکی سه اکوتیپ گیاه پونه وحشی، جهت شناسایی اکوتیپ مقاوم می‌باشد.
مواد و روش‌ها: این پژوهش با دو عامل به صورت فاکتوریل در قالب طرح کاملا تصادفی در دانشگاه فردوسی مشهد انجام شد. عامل اول شامل اکوتیپ با سه سطح (E1: خرسان جنوبی، E2: لرستان، E3: فارس) و عامل دوم تنش شوری با چهار سطح (صفر، ۷۵، ۱۰۰، ۱۵۰ میلی‌مولار نمک کلرید سدیم) بود. اعمال تیمار تنش شوری در مرحله‌ی 4 برگی آغاز شد و در مرحله 8 برگی اندازه‌گیری صفات مورفولوژیکی شامل ارتفاع گیاه، تعداد برگ، تعداد گل، طول گل، وزن‌تر و خشک برگ و وزن‌تر و خشک ریشه و همچنین خصوصیات فیزیولوژیکی شامل کلروفیل a، b، کل و میزان کارتنوئید، میزان نشت الکترولیت، محتوی فنول کل، محتوی فلاونوئید کل، میزان پرولین و محتوی کربوهیدرات کل انجام شد. داده‌های حاصل توسط نرم افزارMinitab 19  مورد آنالیز قرار گرفت.
نتایج: نتایج نشان داد اثر ساده اکوتیپ و تنش شوری و اثر متقابل اکوتیپ × تنش شوری روی صفات مورفولوژیکی شامل ارتفاع گیاه، وزن‌تر و خشک ریشه معنی‌دار بود، اثر ساده اکوتیپ و تنش شوری روی وزن‌تر و خشک برگ گیاهان اثر معنی‌دار نشان داد، همچنین اثر ساده اکوتیپ و تنش شوری و اثر متقابل اکوتیپ × تنش شوری روی صفات تعداد برگ، تعداد گل و طول گل معنی‌دار نبود. تنش شوری سبب کاهش معنی‌دار صفات مورفولوژیکی در اکوتیپ‌های مختلف که شامل ارتفاع گیاه، وزن‌تر و خشک برگ، وزن‌تر و خشک ریشه نسبت به شاهد گردید. اثر ساده اکوتیپ و تنش شوری و اثر متقابل اکوتیپ × تنش شوری بر روی صفات فیزیولوژیکی مانند کلروفیل a، کلروفیل b و کلروفیل کل، کارتنوئید، میزان نشت الکترولیت، و محتوی کل فلاونوئید و میزان پرولین معنی‌دار شد. اثر ساده اکوتیپ و تنش شوری روی میزان فنول کل معنی‌دار بود. در صورتی که اثر ساده اکوتیپ و تنش شوری و اثر متقابل اکوتیپ × تنش شوری روی میزان محتوی کربوهیدرات معنی‌دار نشد. تنش شوری باعث کاهش میزان کلروفیل a، b، کل و کارتنوئید شد، از طرفی این تنش با تأثیر بر گیاه، باعث افزایش میزان محتوی پرولین، نشت الکترولیت، محتوی فنول کل و فلاونوئید برگ گیاه نسبت به گیاه شاهد شد.
نتیجه‌گیری: طبق نتایج حاصل از صفات اندازه‌گیری شده سه اکوتیپ پونه وحشی، مشاهده گردید که این اکوتیپ‌ها واکنش‌های متفاوتی را نسبت به تنش شوری نشان دادند. با توجه به نتایج و داده‌های به دست آمده از اندازه‌گیری صفات ذکر شده، اکوتیپ (خراسان جنوبی)  E1از لحاظ صفات مورد بررسی نسبت به سایر اکوتیپ‌ها برتری داشت و در برابر شرایط تنش شوری مقاومت بیشتری از خود نشان داد.

کلیدواژه‌ها

موضوعات

- Alam, M.S., Tester, M., Fiene, G. and Mousa, M.A.A., 2021. Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants, 10: 712. https://doi.org/10.3390/plants10040712
- Alizadeh, S., Fallahi Gharagoz, S., Pourakbar, L., Siavash Moghaddam, S. and Jamalomidi, M., 2021. Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm. Journal homepage Rhizosphere, 19: 100417. https://doi.org/10.1016/j.rhisph.2021.100417
- Arora, M., Saxena, P., Abdin, M.Z. and Varma, A., 2020. Interaction between Piriformospora indica and Azotobacter chroococcum diminishes the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis, 80: 61–73. https://doi.org/10.1007/s13199-019-00656-w
- Ashraf, M., Athar, H., Harris, P. and Kwon, T.R., 2008. Some Prospective Strategies for Improving Crop Salt Tolerance. Advances in Agronomy, 97: 45-110. https://doi.org/10.1016/S0065-2113(07)00002-8
- Balasubramaniam, T., Shen, G., Esmaeili, N. and Zhang, H., 2023. Plants’ response mechanisms to salinity stress. Plants, 12(12): 2253. https://doi.org/10.3390/plants12122253
- Bates, L.S., Waldren, R.P. and Teare, I., 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39(1): 205-207. https://doi.org/10.1007/BF00018060
- Beltrano, J. and Ronco, M.G., 2008. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20 (1): 29-37. https://doi.org/10.1590/S1677-04202008000100004
- Dere, S., Güneş, T. and Sivaci, R., 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Journal of Botany, 22(1): 13-18.
- Ebrahimzadeh, M.A., Hosseinimehr, S.J., Hamidinia, A. and Jafari, M., 2008. Antioxidant and free radical scavenging activity of Feijoa sallowiana fruit peel and leaves. Pharmacology online, 1: 7-14. https://www.researchgate.net/publication/286282080
- Egea, I., Estrada, Y., Faura, C., Egea-Fernández, J.M., Bolarin, M.C. and Flores, F.B., 2023. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. Frontiers in Plant Science, 14:1092885. https://doi.org/10.3389/fpls.2023.1092885
- Fokkema, W., Boer, W.F., Jeugd, H.P., Dokter, A.M., Nolet, B.A., Kok, L.J., Elzenga, J.T. and Olff, H., 2016. The nature of plant adaptations to salinity stress has trophic consequences. Oikos, 125, 804-811. https://doi.org/10.1111/oik.02757
- Forouzi, A., Ghasemnezhad, A. and Ghorbani Nasrabad, R., 2020. Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. South African Journal of Botany, 134: 109-118. https://doi.org/10.1016/j.sajb.2020.04.001
- Gharib, F.A.L., Mohamed Zeid, I., El-Hameed Salem, Abd, Zakaria, O.M. and Ahmed, E., 2014. Effects of Sargassum latifolium extract on growth, oil content and enzymatic activities of rosemary plants under salinity stress. Life Science Journal, 11: 933-945.
- Ghorbani, M., Movahedi, Z., Azizollah Kheiri, A. and Rostami, M., 2018. Effect of salinity stress on some morpho-physiological traits and quantity and quality of essential oils in Peppermint (Mentha piperita L.). Environmental Stresses in Crop Sciences, 11(2): 413-420. https://doi.org/10.22077/escs.2018.953.1188
- Hnilickova, H., Kraus, K., Vachova, P. and Hnilicka, F., 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. MDPI Plants, 10(5): 845. https://doi.org/10.3390/plants10050845
- Hosseini, Z., Feizi, H., Vatandoost Jertodeh, S. and Alipanah, M., 2019. Evaluation of ecological and morphological traits and essential oil productivity of Mentha longifolia L. in Fars and Khorasan Razavi provinces. Journal of Agroecology, 11(1): 335-347.
- Irigoyen, J., Einerich, D. and Sánchez‐Díaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1): 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
- Jafari, T., Iranbakhsh, A., kamali, K., Daneshmand F. and Seifati, S.E., 2021. Effect of salinity stress levels on some Growth parameters, Mineral ion concentration, Osmolytes, Non-enzymatic antioxidants and phenylalanine ammonialyase activity in three genotypes of Chenopodium quinoa Willd. New Cellular and Molecular Biotechnology Journal, 12(45): 63-85. https://doi.org/20.1001.1.22285458.1400.12.45.3.2
- Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J. and Pérez-Lebeña, E., 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9): 4642. https://doi.org/10.3390/ijms22094642
- Khalvandi, M., Amerian, M., Pirdashti, H., Baradaran Firouzabadi, M. and Gholami, A., 2017. Effects of Piriformospora indica fungi symbiotic on the quantity of essential oil and some physiological parameters of peppermint in saline conditions. Iranian Journal of Plant Biology, 9(32): 1-19. https://doi.org/10.22108/IJPB.2017.94775
- Khalvandi, M., Amerian, M., Pirdashti, H., Keramati, S. and Hosseini, J., 2019. Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline conditions. Industrial Crops and Products, 127: 195-202. https://doi.org/10.1016/j.indcrop.2018.10.072
- Khan, I., Muhammad, A., Chattha, M.U., Skalicky, M., Bilal Chattha, M., Ahsin Ayub, M., Rizwan Anwar, M., Soufan, W., Hassan, M.U., Rahman, M.A., Brestic, M., Zivcak, M. and El Sabagh, A., 2022. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Frontiers in Plant Science, 13:840900. https://doi.org/10.3389/fpls.2022.840900
- Khan, N., Bano, A., Ali, S. and Babar, M.A., 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90: 189–203. https://doi.org/10.1007/s10725-020-00571-x
- Kiani, R., Arzani, A. and Mirmohammady Maibody, S.A.M., 2021. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Frontiers in Plant Science, 12: 646221. https://doi.org/10.3389/fpls.2021.646221
- Kohli, S.K., Khanna, K., Bhardwaj, R., Abd Allah, E.F., Ahmad, P. and Corpas, F.J., 2019. Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants, 8(12), 641. https://doi.org/10.3390/antiox8120641
- Krasensky, J. and Jonak, C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4): 1593-608. https://doi.org/10.1093/jxb/err460
- Liang, X., Zhang, L., Natarajan, S.K. and Becker, D.F., 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9): 998-1011. https://doi.org/10.1089/ars.2012.5074
- Mansoor, S., Wani, O.A., Lone, J.F., Manhas, S., Kour, N., Alam, P. and Ahmad, P., 2022. Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2): 225. https://doi.org/10.3390/antiox11020225
- Menichini , F., Tundis, R., Bonesi, M., Loizzo, M.R., Conforti, F., Statti, G., De Cindio, B., Houghton, P. and Menichini, F., 2009. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food chemistry, 114(2): 553-560. https://doi.org/10.1016/j.foodchem.2008.09.086
- Miransari, M., Mahdavi, S. and Smith, D., 2021. The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Applied Microbiology and Biotechnology, 105: 7201–7213. https://doi.org/10.1007/s00253-021-11552-z
- Moshrefi Araghi, A., Nemati, H., Shoor, M., Azizi, M. and Moshtaghi, N., 2019. Investigation of morphological, biochemical and genetic diversity among Iranian genotypes of Mentha longifolia. Ph.D. thesis, Department of Horticulture Science, Ferdowsi University of Mashhad.
- Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M. and Dursun, A., 2021. Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137: 335-339. https://doi.org/10.1016/j.sajb.2020.10.031
- Pajohi, M.R., Tajik, H., Akhondzade, A., Gandomi, H., Ehsani, A. and Shokohi Sabet Jalali, F., 2010. Evaluation of chemical composition and antibacterial efficacy of Cuminum cyminum L. and Mentha longifolia alone and comined with nisin. Studies in Medical Sciences, 21(4): 324-331. http://umj.umsu.ac.ir/article-1-785-en.html
- Patel, M.K., Kumar, M., Li, W., Luo, Y., Burritt, D.J., Alkan, N. and Tran, L.P., 2020. Enhancing salt tolerance of plants: from metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells, 9(11): 2492. https://doi.org/10.3390/cells9112492
- Rezaloo, Z., Shahbazi, S., Aliloo, A.A. and Sarajuoghi, M., 2023. Impact of mutants of Trichoderma species in modulating salinity stress of Beans (Phaseolus vulgaris L. CV. Khomein). Journal of Nuclear Research and Applications, 3: 47-58. https://doi.org/10.24200/jon.2023.1075
- Rezazadeh, A., Ghasemnezhad, A., Barani, M. and Telmadarrehei, T., 2012. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L.) Leaves. Research Journal of Medicinal Plant, 6. 245-252. https://doi.org/10.3923/rjmp.2012.245.252
- Roodbari, N., Roodbari, S., Ganjali, A., Sabeghi nejad, F. and Ansarifar, M., 2013. The effect of salinity stress on growth parameters and essential oil percentage of Peppermint (Mentha piperita L.). International Journal of Advanced Biological and Biomedical Research, 1(9): 1009-1015.
- Saber Amoli, S., Noroozi, S., Shekarchian, A., Akbarzadeh, M. and Kodoori, M., 2008. Investigation of ecological factors of essential oil of Labiatae species in Kerman province. Iranian Journal of Medicinal and Aromatic Plants Research, 23(4): 532-543.
- Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. and Hasanuzzaman, M., 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10(2): 277. https://doi.org/10.3390/antiox10020277
- Santander, C., Vidal, G., Ruiz, A., Vidal, C. and Cornejo, P., 2022. Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce. Agronomy, 12(3): 598. https://doi.org/10.3390/agronomy12030598
- Sarahi Nobar, M., Niknam, M. and Moradi, B., 2010. Effect of salinity stress on protein content, colorants, sugars and phenolic compounds in tissue culture of several species of Iranian fenugreek. Journal of Sciences, Islamic Republic of Iran, 36 (2): 53-59.
- Singh, R., Ahmed, S., Luxmi, S., Rai, G., Gupta, A.P., Bhanwaria, R. and Gandhi, S.G., 2023. An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions. Frontiers in Plant Science, 14:1165687. https://doi.org/10.3389/fpls.2023.1165687
- Sorkhi, F., 2021. Effect of vermicompost fertilizer on antioxidant enzymes and chlorophyll contents of Borago officinalis under salinity stress. Iranian Journal of Plant Physiology, 11(2): 3589-3598. https://doi.org/ 10.30495/ijpp.2021.681087
- Szabados, L. and Savouré, A., 2010. Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
- Taibi, K., Taibi, F., Abderrahim, L.A., Ennajah, A., Belkhodja, M. and Mulet, J.M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105: 306-312. https://doi.org/10.1016/j.sajb.2016.03.011
- Trifunović-Momčilov, M., Milošević, S., Marković, M., Đurić, M., Jevremović, S., Dragićević, I.Č. and Subotić, A.R., 2021. Changes in photosynthetic pigments content in non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots grown under salt stress in vitro. Agronomy, 11(10):2056. https://doi.org/10.3390/agronomy11102056
- Ulfat, M., Athar, H.-u.-R., Khan, Z.-d. and Kalaji, H. M., 2020. RNAseq Analysis reveals altered expression of key ion transporters causing differential uptake of selective ions in Canola (Brassica napus L.) grown under NaCl stress. Plants, 9(7), 891. https://doi.org/10.3390/plants9070891
- Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S., Mohamed, H. and Javed, S., 2020. Mitigation the adverse effects of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 181. https://doi.org/10.1186/s42269-020-00435-4
- Valifard, M., Mohsen zadeha, S., Kholdebarina, B. and Rowshan, V., 2014. Effects of salt stress on volatile compounds, total phenolic content and antioxidant tactivities of Salvia mirzayanii. South African Journal of Botany, 93: 92- 97. https://doi.org/10.1016/j.sajb.2014.04.002
- Vining, K., Zhang, Q., Tucker, A., Smith, C. and Davis, T., 2005. Mentha longifolia (L.) L.: A model species for mint genetic research. HortScience, 40(5): 1225-1229. https://doi.org/10.21273/HORTSCI.40.5.1225
- Yu, X., Liang, C., Chen, J., Qi, X., Liu, Y. and Li, W., 2015. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Scientia Horticulturae, 197: 579-583. https://doi.org/10.1016/j.scienta.2015.10.023
- Zahedi, S., Abolhassani, M., Hadian Deljou, M., Feyzi, H., Akbari, A., Rasouli, F., Zeki Koçak, M., Kulak, M. and Gohari, G., 2022. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): A new engineered nanoparticle to ameliorate salinity stress on grapes (Vitis vinifera L. cv Sultana). Plant Stress, 7: 100128. https://doi.org/10.1016/j.stress.2022.100128
- Zhao, H., Liang, H., Chu, Y., Sun, C., Wei, N., Yang, M. amd Zheng, C., 2019. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings. HortScience, 54(12), 2125-2133. https://doi.org/10.21273/HORTSCI14432-19
- Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X. and Wang, K., 2018. Effects of salt stress on plant growth, Antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 19(1): 252. https://doi.org/10.3390/ijms19010252
- Zouari-Bouassida, K., Trigui, M., Makni, S., Jaiel, L. and Tounsi, S., 2018. Seasonal variation in essential oils composition and the biological and pharmaceutical protective effects of Mentha longifolia leaves grown in Tunisia. BioMed Research International, 9: 7856517. https://doi.org/10.1155/2018/7856517