همکاری با انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

2 مرکز مطالعات و تحقیقات هرمزگان، دانشگاه هرمزگان، بندرعباس

3 استادیار گروه تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی هرمزگان، سازمان آموزش و ترویج تحقیقات کشاورزی، بندرعباس،

10.22092/ijmapr.2023.359502.3406

چکیده

سابقه و هدف: گیاه آویشن (Thymus vulgaris L.) از گیاهان دارویی و معطر و متعلق به خانواده نعناعیان است. این گیاه دارای خواص ارزشمند دارویی و تغذیه‌ای می‌باشد. خواص دارویی آویشن باغی سبب شده است تا این گیاه از معروف‌ترین گیاهان در دنیا باشد، بنابراین تولید آن نقش مهمی در اقتصاد کشاورزی ایران دارد. تنش‌های محیطی اثر معنی‌داری روی عملکرد و کیفیت گیاهان دارویی دارند. خشکی از مهمترین تنش‌های غیرزیستی و از عوامل محدود کننده تولید محصولات در جهان می‌باشد که می‌تواند اثرهای نامطلوبی روی رشد و عملکرد گیاهان داشته باشد. اندوفیت‌های باکتریایی به‌عنوان یکی از انواع میکروارگانیسم‌های هم‌زیست با گیاهان، نقش مهمی در بهبود رشد و عملکرد گیاهان میزبان خود در شرایط تنش خشکی دارند. با توجه به مشکلات کم‌آبی در ایران، این مطالعه با هدف بررسی تأثیر اندوفیت باکتریایی Agrobacterium deltaense جدا شده از گیاه مور تلخ (Salvia mirzayanii) بر برخی خصوصیات کمّی و کیفی گیاهان آویشن باغی تحت تنش خشکی انجام شد.
مواد و روش‌ها: ابتدا با استفاده از روش‌های مورفولوژیک، فیزیولوژیک و مولکولی، اندوفیت باکتریایی شناسایی شد. سپس بذرهای ضدعفونی شده آویشن باغی در شرایط استاندارد کشت گردیدند و پس از دو ماه به گلدان منتقل شدند. پس از طی شش ماه از زمان انتقال کشت به گلدان، در سه مرحله به‌طور هفتگی با استفاده از اندوفیت باکتریایی A. deltaense، در گیاهان آویشن باغی تلقیح انجام شد. سوسپانسیون باکتری در محیط کشت NB با غلظت 108 × 1 میلی‌لیتر تنظیم شد، سپس به‌صورت محلول‌پاشی به اندام‌های هوایی گیاهان و تزریق به ریشه انجام گردید. برای اطمینان از حضور اندوفیت‌ها پس از گذشت یک ماه از محلول‌پاشی، آزمون استقرار اندوفیت باکتریایی در گیاه انجام شد و بعد از آن تنش خشکی به مدت سه ماه اعمال گردید و بعد صفات مورفولوژیک، فیزیولوژیک و بیوشیمیایی گیاه آویشن باغی ارزیابی شد. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه دانشگاه هرمزگان در سال 1400 انجام شد. تیمارها در چهار سطح تنش خشکی (0، 25، 50 و 75 درصد ظرفیت مزرعه) و دو سطح تلقیح باکتری (عدم تلقیح و تلقیح باA. deltaense ) تعیین شدند. صفات مورد ارزیابی شامل: ارتفاع، وزن‌تر و خشک ساقه و ریشه، درصد نشت الکترولیت، کلروفیل a و b، کلروفیل کل، کاروتنوئید، پرولین، قندهای محلول، میزان فنول کل و درصد اسانس وابستگی میکوریزایی بودند.
نتایج: تنش خشکی اثرهای معنی‌داری بر کاهش عملکرد گیاه آویشن باغی ازجمله کاهش ارتفاع ساقه، وزن تر و خشک ساقه و ریشه، کلروفیل a وb، کلروفیل کل و کاروتنوئید داشت. با این حال، تحت تنش خشکی شدید (75% ظرفیت زراعی)، تلقیح آویشن باغی با اندوفیت باکتریایی A. deltaense باعث افزایش معنی‌دار ارتفاع (35.41%)، وزن خشک ریشه (85.71%)، وزن تر ریشه (35.74%)، وزن خشک ساقه (22.83)، وزن تر ساقه (37%)، کلروفیل a (15.97%)، کلروفیل b (41.09%)، کلروفیل کل (20.77)، کاروتنوئیدها (25%) و سبب کاهش نشت الکترولیت به میزان 5.90% نسبت به شاهد و کاهش اثرهای منفی تنش خشکی ‌گردید. همچنین، حضور اندوفیت باکتریایی A. deltaense در برابر عدم حضور آن در شرایط تنش خشکی، منجر به افزایش صفات پرولین (17.07%)، قندهای محلول (15.09%)، فنول کل (27.39%)، درصد اسانس (20%) و میزان وابستگی میکوریزایی (84%) نسبت به شاهد شد.
نتیجه‌گیری: نتایج این مطالعه نشان می‌دهد که میکروارگانیسم‌های مفید ازجمله اندوفیت باکتریایی می‌توانند به‌عنوان راهکاری مناسب برای افزایش تحمل گیاهان به تنش خشکی استفاده شوند. از این ظرفیت می‌توان در جهت کشاورزی پایدار و کاهش محدودیت‌های کشت در مناطقی مانند مناطق خشک و کم‌آب استفاده کرد. در صورت استفاده از اندوفیت باکتریایی A. deltaense در کشت آویشن باغی تحت شرایط تنش خشکی، می‌توان بهبود رشد و عملکرد گیاهان، افزایش میزان درصد اسانس و فنول کل که نشانگر کیفیت و ترکیبات مؤثر درمانی آنهاست را مشاهده کرد. این افزایش نه تنها به ارتقاء خواص دارویی گیاهان کمک می‌کند بلکه ارزش اقتصادی و تجاری آنها را نیز افزایش می‌دهد.

کلیدواژه‌ها

موضوعات

- Abdelshafy Mohamad, O.A., Ma, J.B., Liu, Y.H., Zhang, D., Hua, S., Bhute, S., Hedlund, B.P., Li, W.J. and Li, L., 2020. Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Frontiers in Plant Science, 11: 47.
- Abd Elbar, O.H., Farag, R.E. and Shehata, S.A., 2019. Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Annals of Agricultural Sciences, 64(2): 129-137.
- Acuña‐Rodríguez, I.S., Newsham, K.K., Gundel, P.E., Torres‐Díaz, C. and Molina‐Montenegro, M.A., 2020. Functional roles of microbial symbionts in plant cold tolerance. Ecology Letters, 3(6): 1034-1048.
- Alori, E.T., Glick, B.R. and Babalola, O.O., 2017. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in microbiology, 8: 971.
- Askary, M., Behdani, M.A., Parsa, S., Mahmoodi, S. and Jamialahmadi, M., 2018. Water stress and manure application affect the quantity and quality of essential oil of Thymus daenensis and Thymus vulgaris. Industrial Crops and Products, 111: 336-344.
- Baghazadeh Daryaii, L., Samsampour, D., Bagheri, A. and Sohrabipour, J., 2023. Marine Algal-Derived Endophytic Bacteria: Induced Tolerance to Salinity Stress in Mexican Lime Seedlings. International Journal of Horticultural Science and Technology, 11(1): 1-14.
- Bates, L.S., Waldren, R.A. and Teare, I., 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39: 205-207.
- Bayoub, K., Baibai, T., Mountassif, D., Retmane, A. and Soukri, A., 2010. Antibacterial activities of the crude ethanol extracts of medicinal plants against Listeria monocytogenes and some other pathogenic strains. African Journal of Biotechnology, 9(27):4251-4258.
- Bhatt, R. and Srinivasa Rao, N., 2005. Influence of pod load on response of okra to water stress. Indian journal of plant physiology, 10(1): 54-59.
- Bouremani, N., Cherif-Silini, H., Silini, A., Bouket, A.C., Luptakova, L., Alenezi, F.N., Baranov, O. and Belbahri, L., 2023. Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water, 15(3): 418.
- Brand-Williams, W., Cuvelier, M.E. and Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
- Casiglia, S., Bruno, M., Scandolera, E., Senatore, F. and Senatore, F., 2019. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8): 2704-2712.
- Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y. and Zhang, L., 2017. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Scientific reports, 7(1): 41564.
- Chieb, M. and Gachomo, E.W., 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1): 407.
- Cohen, A.C., Bottini, R., Pontin, M., Berli, F.J., Moreno, D., Boccanlandro, H., Travaglia, C.N. and Piccoli, P.N., 2015. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum, 153(1): 79-90.
- Cooper, M. and Messina, C.D., 2023. Breeding crops for drought-affected environments and improved climate resilience. The Plant Cell, 35(1): 162-186.
- Dastogeer, K.M.G., Chakraborty, A., Sarker, M.S.A. and Akter, M.A., 2020. Roles of fungal endophytes and viruses in mediating drought stress tolerance in plants. International Journal of Agriculture and Biology, 24(6): 1497-1512.
- Dubey, A., Saiyam, D., Kumar, A., Hashem, A., Abd-Allah, E.F. and Khan, M.L., 2021. Bacterial root endophytes: Characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. International Journal of Environmental Research and Public Health, 18(3): 931.
- Eid, A.M., Fouda, A., Abdel-Rahman, M.A., Salem, S.S., Elsaied, A., Oelmüller, R., Hijri, M., Bhowmik, A., Elkelish, A. and Hassan, S.E.D., 2021. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants, 10(5): 935.
- Eke, P., Kumar, A., Sahu, K.P., Wakam, L.N., Sheoran, N., Ashajyothi, M., Patel, A. and Fekam, F.B., 2019. Endophytic bacteria of desert cactus (Euphorbia trigonas Mill.) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological Research, 228: 126302.
- Garcia, C., Martinez, R. and Lopez, P., 2024. Endophytic microorganisms enhance essential oil production in plants under drought conditions. Journal of Applied Microbiology, 210(3): 432-445.
- Ghabooli, M., 2014. Effect of Piriformospora indica inoculation on some physiological traits of barley (Hordeum vulgare) under salt stress. Chemistry of natural compounds, 50(6): 1082-1087.
- Gharib, F., Zeid, I.M., Salem, O. and Ahmed, E.Z., 2014. Effects of Sargassum latifolium extract on growth, oil content and enzymatic activities of rosemary plants under salinity stress. Life Science Journal, 11(10): 933-945.
- Głodowska, M., Schwinghamer, T., Husk, B. and Smith, D., 2017. Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8(9): 1048-1064.
- Golparyan, F., Azizi, A. and Soltani, J., 2018. Endophytes of Lippia citriodora (Syn. Aloysia triphylla) enhance its growth and antioxidant activity. European Journal of Plant Pathology, 152: 759-768.
- Gupta, R., 2018. Impact of Endophytic Bacteria on Phenolic Content and Essential Oil Composition in Ocimum basilicum L. Journal of Plant Interactions, 13(1): 132-140.
- Gusain, Y.S., Singh, U. and Sharma, A., 2015. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). African Journal of Biotechnology, 14(9): 764-773.
- Haider, M.S., Zhang, C., Kurjogi, M.M., Pervaiz, T., Zheng, T., Zhang, C., Lide, C., Shangguan, L. and Fang, J., 2017. Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Scientific reports, 7(1): 13134.
- Hartman, K. and Tringe, S.G., 2019. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical journal, 476(19): 2705-2724.
- Johnson, A., Smith, B. and Davis, D., 2023. Endophytic microorganisms enhance phenolic production in plants under drought conditions. Journal of Plant Interactions, 200(4): 345-360.
- Jayakumar, A., Padmakumar, P., Nair, I.C. and Radhakrishnan, E., 2020. Drought tolerant bacterial endophytes with potential plant probiotic effects from Ananas comosus. Biologia, 75(10): 1769-1778.
- Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., Li, X., Huo, Z., Li, S. and Ding, R., 2017. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179: 5-17.
- Kavi Kishor, P.B., Hima Kumari, P., Sunita, M. and Sreenivasulu, N., 2015. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in plant science, 6: 544.
- Khan, A.L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., Khan, M.A., Kang, S.M., Kim, Y.H. and Yun, B.W., 2017. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133: 58-69.
- Khan, A.L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., Khan, M.A., Kang, S.M., Kim, Y.H. and Yun, B.W., 2017. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133: 58-69.
- Khalil, S., Loynachan, T.E. and Tabatabai, M.A., 1994. Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agronomy journal, 86(6): 949-958.
- Khaskheli, M.A., Wu, L., Chen, G., Chen, L., Hussain, S., Song, D., Liu, S. and Feng, G., 2020. Isolation and characterization of root-associated bacterial endophytes and their biocontrol potential against major fungal phytopathogens of rice (Oryza sativa L.). Pathogens, 9(3): 172.
- Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P.S. and Nautiyal, C.S., 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant signaling & behavior, 11(1): 1071004.
- Lastochkina, O., Yakupova, A., Avtushenko, I., Lastochkin, A. and Yuldashev, R., 2023. Effect of Seed Priming with Endophytic Bacillus subtilis on Some Physio-Biochemical Parameters of Two Wheat Varieties Exposed to Drought after Selective Herbicide Application. Plants, 12(8):1724.
- Lata, R., Chowdhury, S., Gond, S.K. and White Jr, J.F., 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in applied microbiology, 66(4): 268-276.
- Li, H., Zhao, Y. and Jiang, X., 2019. Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilean journal of agricultural research, 79(3): 396-404.
- Lichtenthaler, H.K. and Buschmann, C., 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current protocols in food analytical chemistry, 1(1): F4-3.
Liu, H., Li, J. and Singh, B.K., 2024. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. Nature Plants, 10(8):1159-1171.
- Mateus, J.R., Marques, J.M., Dal’Rio, I., Vollú, R.E., Coelho, M.R.R. and Seldin, L., 2019. Response of the microbial community associated with sweet potato (Ipomoea batatas) to Bacillus safensis and Bacillus velezensis strains. Antonie Van Leeuwenhoek, 112: 501-512.
- Mehrasa, H., Farnia, A., Kenarsari, M.J. and Nakhjavan, S., 2022. Endophytic bacteria and SA application improve growth, biochemical properties, and nutrient uptake in white beans under drought stress. Journal of Soil Science and Plant Nutrition, 22(3): 3268-3279.
- Mercado-Blanco, J. and JJ Lugtenberg, B., 2014. Biotechnological applications of bacterial endophytes. Current Biotechnology, 3(1): 60-75.
- Michel, B.E. and Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant physiology, 51(5): 914-916.
- Nanda, S., Mohanty, B. and Joshi, R.K., 2019. Endophyte-mediated host stress tolerance as a means for crop improvement. Endophytes and secondary metabolites, 677-701.
- Narayanasamy, S., Thankappan, S., Kumaravel, S., Ragupathi, S. and Uthandi, S., 2023. Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics, 115(1): 110550.
- Nasr Esfahani, M., 2013. Effect of dry stress on growth and antioxidant system in three chickpea (Cicer arietinum L.) cultivars. Iranian Journal of Plant Biology, 5(15): 111-124.
- Pandey, J., Devadasu, E., Saini, D., Dhokne, K., Marriboina, S., Raghavendra, A.S. and Subramanyam, R., 2023. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. The Plant Journal, 113(1): 60-74.
- Rasheed, A., Zhao, L., Raza, A., Mahmood, A., Xing, H., Lv, X., Saeed, H., Alqahtani, F.M., Hashem, M. and Hassan, M.U., 2023. Role of Molecular Breeding Tools in Enhancing the Breeding of Drought-Resilient Cotton Genotypes: An Updated Review. Water, 15(7): 1377.
- Riyazuddin, R., Nisha, N., Singh, K., Verma, R. and Gupta, R., 2022. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Reports, 41(3): 519-533.
- Saeed, Q., Xiukang, W., Haider, F.U., Kučerik, J., Mumtaz, M.Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M. and Naveed, M., 2021. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19): 10529.
- Sairam, R.K., Rao, K.V. and Srivastava, G.C., 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5): 1037-1046.
- Saleem, M., Nawaz, F., Hussain, M.B. and Ikram, R.M., 2021. Comparative effects of individual and consortia plant growth promoting bacteria on physiological and enzymatic mechanisms to confer drought tolerance in maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 21: 3461-3476.
- Sandhya, V., Ali, S.Z., Grover, M., Reddy, G. and Venkateswarlu, B., 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant growth regulation, 62: 21-23.
- Sapre, S., Gontia-Mishra, I. and Tiwari, S., 2018. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research, 206: 25-32.
- Sarma, R.K. and Saikia, R., 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant and soil, 377: 111-126.
- Sayed, M.A., Schumann, H., Pillen, K., Naz, A.A. and Léon, J., 2012. AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC genetics, 13: 1-12.
- Sebastiana, M., da Silva, A.B., Matos, A.R., Alcântara, A., Silvestre, S. and Malhó, R., 2018. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza, 28: 247-258.
- Shahbaz, M., Mushtaq, Z., Andaz, F. and Masood, A., 2013. Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)?. Scientia horticulturae, 164: 507-511.
- Shahzad, R., Khan, A.L., Bilal, S., Waqas, M., Kang, S.M. and Lee, I.J., 2017. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 136: 68-77.
- Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., Handa, N., Kapoor, D., Bhardwaj, R. and Zheng, B., 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7): 285.
- Silva, A.S., Tewari, D., Sureda, A., Suntar, I., Belwal, T., Battino, M., Nabavi, S.M. and Nabavi, S.F., 2021. The evidence of health benefits and food applications of Thymus vulgaris L. Trends in Food Science & Technology, 117: 218-227.
- Singh, M., Sharma, J.G. and Giri, B., 2023. Microbial inoculants alter resilience towards drought stress in wheat plants. Plant Growth Regulation, 101(3): 823-843.
- Smith, J., Jones, A. and Brown, C., 2020. The impact of drought on phenolic compounds in Thymus vulgaris. Journal of Plant Physiology, 150(3): 265-278.
- Smith, A., Jones, B. and Davis, C., 2022. The role of phenolic compounds in regulating drought resistance in Thymus vulgaris. Journal of Plant Physiology, 165(4): 432-445.
- Smith, J., Brown, A. and Davis, C., 2023. The impact of increased essential oil percentage on drought response in Thymus vulgaris. Journal of Herbal Medicine, 180(2): 123-136.
- Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B., 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of plant physiology, 167(12): 1009-1017.
- Szabados, L. and Savouré, A., 2010. Proline: a multifunctional amino acid. Trends in plant science, 15(2): 89-97.
- Tefera, T. and Vidal, S., 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl, 54: 663-669.
- Telfer, A., 2014. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant and Cell Physiology, 55(7): 1216-1223.
- Tufail, M.A., Touceda-González, M., Pertot, I. and Ehlers, R.U., 2021. Gluconacetobacter diazotrophicus Pal5 enhances plant robustness status under the combination of moderate drought and low nitrogen stress in Zea mays L. Microorganisms, 9(4): 870.
- Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A.A., Ihsan, M., Laiq, M., Ullah, S. and Fahad, S., 2019. Drought tolerance improvement in plants: an endophytic bacterial approach. Applied Microbiology and Biotechnology, 103: 7385-7397.
- Wang, Y., Chen, G., Zeng, F., Han, Zh., Qiu, C.W., Zeng, M., Yang, Z., Xu, F., Wu, D., Deng, F., Xu, Sh., Chater, C., Korol, A., Shabala, S., Wu, F., Franks, P., Nevo, E. and Chen, Z.H., 2023. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. New Phytologist, 237(2): 497-514.
- Yang, Z. and Qin, F., 2023. The battle of crops against drought: Genetic dissection and improvement. Journal of Integrative Plant Biology, 65(2): 496-525.
- Yemm, E. and Willis, A., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical journal, 57(3): 508-514.
- Zhang, W., Xie, Z., Zhang, X., Lang, D. and Zhang, X., 2019. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. Journal of Plant Interactions, 14(1): 580-589.
- Zhao, X., Yuan, X., Xing, Y., Dao, J., Zhao, D., Li, Y., Li, W. and Wang, Z., 2023. A meta‐analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress. Plant, Cell & Environment, 46(1): 199-214.