همکاری با انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه میکروبیولوژی، دانشگاه آزاد اسلامی واحد کرج

2 دانشیار، گروه علوم و صنایع غذایی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استاد، گروه میکروبیولوژی، دانشگاه آزاد اسلامی واحد کرج

چکیده

اغلب ترکیب‌های گیاهی نسبت به آنتی‌بیوتیک‌ها به‌خصوص علیه باکتریهای گرم منفی، خاصیت ضدمیکروبی بسیار پایین‌تری دارند (µg/ml1000-100 = MIC). امروزه دانشمندان معتقدند که پمپ‌های افلوکسی باکتریایی مسئول این مشکل هستند. این پروتئین‌های غشایی قادر به شناسایی و خروج ترکیب‌های ضدمیکروبی مختلف ازجمله ترکیب‌های گیاهی با ساختارهای شیمیایی گوناگون از داخل سلول می‌باشند و متعاقباً منجر به بروز مقاومت باکتریها در برابر این مواد می‌گردند. هدف از این تحقیق بررسی علت اصلی خاصیت ضدمیکروبی پایین آلکالوئیدهای نوسکاپین، کافئین و وینکامین علیه سودوموناس آئروجینوزا (نماینده باکتریهای گرم منفی با مقاومت بالای دارویی) بوده‌است. اغلب آلکالوئیدها جزء فیتوآلکسین‌های گیاهی هستند که مقدار آنها در هنگام تهاجم میکروبی افزایش می‌یابد، بدین معنی که عملاً دارای خاصیت ضدمیکروبی هستند، اما آلکالوئیدهای مورد استفاده در این تحقیق در شرایط آزمایشگاهی هیچ خاصیت ضدمیکروبی از خود نشان نمی‌دهند. اثر ضدمیکروبی ذاتی (واکنش بین آلکالوئیدها و فنیل آلانین-آرژینین بتانفتیل‌آمید (PAβN) (مهارکننده پمپ‌های افلوکسی باکتریهای گرم منفی)) و خاصیت مهارکنندگی پمپ‌های افلوکسی (سینرژی بین آلکالوئیدها و لووفلوکساسین (سوبسترای پمپ‌های افلوکسی موجود در سودوموناس آئروجینوزا)) آلکالوئیدهای این تحقیق به‌وسیله آزمایش تیتراسیون چکربورد بررسی شد. نتایج نشان داد که کافئین و وینکامین ذاتاً مواد ضدمیکروبی گیاهی هستند. به‌طوری که با مختل کردن پمپ افلوکسی MexAB-OprM در سویه بسیار مقاوم nalB سودوموناس آئروجینوزا توسط PAβN، خاصیت ضدمیکروبی کافئین و وینکامین به‌ترتیب به مقادیر قابل‌توجه 17 و 8 برابر افزایش یافت. بنابراین می‌توان گفت پمپ‌های افلوکسی باکتریایی مهمترین عامل در تضعیف خاصیت ضدمیکروبی ترکیب‌های گیاهی می‌باشند؛ البته به نظر می‌رسد با مهار فعالیت این پمپ‌ها بتوان عملکرد بالینی این مواد طبیعی را به‌طور قابل‌توجهی بهبود بخشید و بدین طریق امید داشت که مواد گیاهی نیز همانند آنتی‌بیوتیک‌ها به زمینه درمان بالینی راه یابند.

کلیدواژه‌ها

 - Adebayo, J.O. and Krettli, A.U., 2011. Potential antimalarials from Nigerian plants: a review. Journal of Ethnopharmacology, 133(2): 289-302.
- Ball, A.R., Casadei, G., Samosorn, S., Bremner, J.B., Ausubel, F.M., Moy, T.I. and Lewis, K., 2006. Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chemical Biology, 1(9): 594-600.
- Carter, J.P., Spink, J., Cannon, P.F., Daniels, M.J. and Osbourn, A.E., 1999. Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Applied and Environmental Microbiology, 65(8): 3364-3372.
- Dangl, J.L. and Jones, J.D.G., 2001. Plant pathogens and integrated defence responses to infection. Nature, 411(6829): 826-833.
- Daugelavicius, R., Buivydas, A., Sencilo, A. and Bamford, D.H., 2010. Assessment of the activity of RND-type multidrug efflux pumps in Pseudomonas aeruginosa using tetraphenylphosphonium ions. International Journal of Antimicrobial Agents, 36(3): 234-238.
- De Villiers, B.J., Van Vuuren, S.F., Van Zyl, R.L. and Van Wyk, B.E., 2010. Antimicrobial and antimalarial activity of Cussonia species (Araliaceae). Journal of Ethnopharmacology, 129(2): 189-196.
- Ettefagh, K.A., Burns, J.T., Junio, H.A., Kaatz, G.W. and Cech, N.B., 2011. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Medica, 77(8): 835-840.
- Fernebro, J., 2011. Fighting bacterial infections-future treatment options. Drug Resistance Updates, 14(2): 125-139.
- Garvey, M.I., Rahman, M.M., Gibbons, S. and Piddock, L.J.V., 2011. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. International Journal of Antimicrobial Agents, 37(2): 145-151.
- Gibbons, S. and Udo, E.E., 2000. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet (K) determinant. Phytotherapy Research, 14(2): 139-140.
- Gibbons, S., Oluwatuyi, M. and Kaatz, G.W., 2003. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. Journal of Antimicrobial Agents and Chemotherapy, 51(1): 13-17.
- Gibbons, S., 2008. Phytochemicals for bacterial resistance-strengths, weaknesses and opportunities. Planta Medica, 74(6): 594-602.
- Higgins, P.G., Fluit, A.C., Milatovic, D., Verhoef, J. and Schmitz, F.J., 2003. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. International Journal of Antimicrobial Agents,21(5): 409-413.
- Islam, S., Oh, H., Jalal, S., Karpati, F., Ciofu, O., Hoiby, N. and Wretlind, B., 2009. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clinical Microbiology and Infection,15(1): 60-66.
- Jones, J.D.G. and Dangl, J.L., 2006. The plant immune system. Nature, 444(7117): 323-329.
- Kamicker, B.J., Sweeney, M.T., Kaczmarek, F., Dib-Haj, F., Shang, W., Crimin, K., Duignan, J. and Gootz, T.D., 2008. Bacterial efflux pump inhibitors. Methods in Molecular medicine, 142(1): 187-204.
- Kiser, T.H., Obritsch, M.D., Jung, R., MacLaren, R. and Fish, D.N., 2010. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy, 30(7): 632-638.
- Kuete, V., Alibert-Francob, S., Eyongc, K.O., Ngamenid, B., Folefocc, G.N., Nguemevingc, J.R., Tangmouoc, J.G., Fotsoc, G.W., Komguemc, J., Ouahouoc, B.M.W., Bollab, J.M., Chevalierb, J., Ngadjui, B.T., Nkengfack,A.E. and Pagès, J.M., 2011. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. International Journal of Antimicrobial Agents, 37(5): 156-161.
- Lewis, K., 2001. In search of natural substrates and inhibitors of MDR pumps. Journal of Molecular Microbiology and Biotechnology, 3(2): 247-254.
- Li, X.Z. and Nikaido, H., 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs, 69(12): 1555-1623.
- Lomovskaya, O., Warren, M.S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H. and Lee, V.J., 2001. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Journal of Antimicrobial Agents and Chemotherapy, 45(1): 105-116.
- Mohtar, M., Johari, S.A., Li, A.R., Isa, M.M., Mustafa, S., Ali, A.M. and Basri, D.F., 2009. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA). Current Microbiology, 59(2): 181-186.
- Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., Hosono, S., Ohta, T., Hoshino, K., Ishida, H., Yoshida, K., Renau, T.E., Léger, R., Zhang, J.Z., Lee, V.J. and Watkins, W.J. 2003a. MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorganic and Medicinal Chemistry Letters, 13(23): 4201-4204.
- Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., Ohta, T., Hoshino, K., Otani, T., Kurosaka, Y., Yoshida, K., Ishida, H., Lee, V.J., Renau, T.E. and Watkins WJ., 2003b. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: achieving activity in vivo through the use of alternative scaffolds. Bioorganic and Medicinal Chemistry Letters, 13(23): 4205-4208.
- Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A.E., 1999. Compromised disease resistance in saponin-deficient plants. Proceedings of the National Academy of Sciences, 96(2): 12923-12928.
- Piddock, L.J.V., Garvey, M.I., Rahman, M.M. and Gibbons, S., 2010. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. Journalof Antimicrobial Chemotherapy, 65(6): 1215-1223.
- Rosenthal, V.D., Maki, D.G., Jamulitrat, S., Medeiros, E.A., Todi, S.K., Gomez, D.Y., Leblebicioglu, H., Abu Khader, I., Miranda Novales, M.G., Berba, R., Ramírez Wong, F.M., Barkat, A., Pino, O.R., Dueñas, L., Mitrev, Z., Bijie, H., Gurskis, V., Kanj, S.S., Mapp, T., Hidalgo, R.F., Ben Jaballah, N., Raka, L., Gikas, A., Ahmed, A., Thu le, T.A. and Guzmán Siritt, M.E., 2010. International nosocomial infection control consortium (INICC) report, data summary for 2003-2008. American Journal of Infection Control,38(2): 95-104.
- Sibanda, T. and Okoh, A.I., 2007. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African Journal of Biotechnology, 6(25): 2886-2896.
- Stavri, M., Piddock, L.J.V. and Gibbons, S., 2007. Bacterial efflux pump inhibitors from natural sources. Journal of Antimicrobial Agents and Chemotherapy, 59(6): 1247-1260.
- Stermitz, F.R., Tawara-Matsuda, J., Lorenz, P., Mueller, P., Zenewicz, L. and Lewis, K., 2000a. 5'-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. Journal of Nattural Products, 63(8): 1146-1149.
- Stermitz, F.R., Lorenz, P., Tawara, J.N., Zenewicz, L. and Lewis, K. 2000b. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences, 97(4): 1433-1437.
- Stermitz, F.R., Beeson, R.D., Mueller, P.J., Hsiang, J.F. and Lewis, K., 2001. Staphylococcus aureus MDR efflux pump inhibitors from a Berberisand a Mahonia(sensu strictu) species. Biochemical Systematics and Ecology, 29(8): 793-798.
- Stoitsova, S.O., Braun, Y., Ullrich, M.S. and Weingart, H., 2008. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Applied and Environmental Microiology, 74(11): 3387-3393.
- Tegos, G., Stermitz, F.R., Lomovskaya, O. and Lewis, K., 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Journal of Antimicrobial Agents and Chemotherapy, 46(10): 3133-3141.
- Tegos, G.P., Masago, K., Aziz, F., Higginbotham, A., Stermitz, F.R. and Hamblin, M.R., 2008. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Journal of Antimicrobial Agents and Chemotherapy, 52(9): 3202-3209.
- Trepout, S., Taveau, J.C., Benabdelhak, H., Granier, T., Ducruix, A., Frangakis, A.S. and Lambert, O., 2010. Structure of reconstituted bacterial membrane efflux pump by cryo-electron tomography. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798(10): 1953-1960.
- Webber, M.A. and Piddock, L.J., 2003. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Agents and Chemotherapy, 51(1): 9-11.
- Westholm, D.E., Marold, J.D., Viken, K.J., Duerst, A.H., Anderson, G.W. and Rumbley, J.N., 2010. Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members. Endocrinology, 151(2): 5941-5951.
- Yamane, H., Konno, K., Sabelis, M., Takabayashi, J., Sassa, T. and Oikawa, H., 2010. Chemical defence and toxins of plants. Comprehensive Natural Products II, 4(1): 339-385.
- Yoshida, K.I., Nakayama, K., Yokomiz, Y., Ohtsuka, M., Takemura, M., Hoshino, K., Kanda, H., Namba, K., Nitanai, H., Zhang, J.Z., Lee, V.J. and Watkins, W.J., 2006. MexAB-OprM specific efflux pump inhibitors in Pseudomon asaeruginosa. Part 6: Exploration ofaromatic substituents. Bioorganic and Medicinal Chemistry Letters, 14(24): 8506-8518.