In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

1 MSc. student, Mechanical Agriculture Department, Tarbiat Modares University, Tehran, Iran

2 Mechanical Agriculture Department, Tarbiat Modares University, Tehran, Iran

Abstract

Damask rose with scientific name of Rosa damascena Mill. contains essential oils with large medicinal properties. Qualitative and quantitative extraction of essential oils as well as its economic justification depends on appropriate methods of drying. Appropriate method of drying reduces loss and damage during storage and helps maintain product quality. The purpose of this study was to predict Rose moisture content during the drying process with  hot air flowing as a function of temperature at four levels (40, 50, 60 and 70°C) and air velocity at three levels (0.5, 1 and 1.5 m/s), using artificial neural networks. The average initial and final moisture contents were calculated to be 78% and 9%, respectively. The drying process was modeled by mathematical models using matlab and then the moisture content graphs were achieved by excel. Then, the drying process was modeled using neural networks with three inputs including temperature, air velocity and time. Results showed that neural network was more accurate than mathematic models in modeling and predicting the drying process of damask rose and could be used in on-line controlling.

Keywords

- امیدبیگی، ر.، 1379الف. رهیافت‌های تولید و فرآوری گیاهان دارویی (جلد 1). انتشارات استان قدس رضوی، مشهد، 283 صفحه.
- امیدبیگی، ر.، 1379ب. رهیافت‌های تولید و فرآوری گیاهان دارویی(جلد 3). انتشارات استان قدس رضوی، مشهد، 397 صفحه.
- صیاد، م.، 1384. تأثیر دما و سرعت هوا بر خشک کردن لایه نازک سیب. پایان‌نامه کارشناسی ارشد، گروه صنایع غذایی دانشکده کشاورزی، دانشگاه تبریز.
- موسویان، م.ت.ح. و بصیری، ش.، 1387. بررسی تأثیرات درجه حرارت و سرعت جریان هوا در خشک کردن صنعتی آویشن گونه برگ باریک روی مقادیر کمّی اسانس استحصالی. هجدهمین همایش ملی علوم و صنایع غذایی. خراسان رضوی، مشهد، 26-24 مهر: 140.
 - Ayensu, A., 1997. Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4-6): 121-126.
- Banakar, A. and Azeem, M.F., 2008. Artificial Wavelet Neural Network and Its Application in Neuro-Fuzzy Models. Applied Soft Computing, 8(4): 1463-1485.
- Diamante, L.M. and Munro, P.A., 1993. Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4): 271-276.
- Ekechukwu, O.V., 1999. Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Conversion and Management, 40(6): 593-613.
- Erenturk, M.S., Gulaboglu, S. and Gultekin, S., 2004a. The thin-layer drying characteristics of rosehip. Biosystems Engineering, 89(2): 159-166.
- Erenturk, K., Erenturk, S. and Tabil, L.G., 2004b. A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regrestion analysis and neural network. Computers and Electronics in Agriculture, 45(1-3): 71-90.
- Erenturk, S. and Erenturk, K., 2007. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of Food Engineering, 78(3): 905-912.
- Fatouh, M., Metwally, M.N., Helali, A.B. and Shedid, M.H., 2006. Herbs drying using a heat pump dryer. Energy Conversion and Management, 47(15-16): 2629-2643.
- Hall, A.C., 1980. Interfacial tension and phase behavior in system of petroleum suffocate/ brine/n-alkane. Journal of Colloids and Surface, 1: 209-228.
- Henderson, S.M. and Pabis, S., 1961. Grain drying theory II. temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3):169-174.
- Islam, M.R., Sablani, S.S. and Mujumdar, A.S., 2003. An artificial neural network model for prediction of drying rates. Drying Technology: An International Journal, 21(9): 1867-1884.
- Khazaei, J., Chegini, Gh.R. and Bakhshian, M., 2008. A novel alternative method for modeling the effects of air temperature and slice thickness on quality and drying kinetics of tomato slices: superposition technique. Drying Technology: An International Journal, 26(6): 759-775.
- Lasasni, S., Kouhila, M., Mahrouz, M., Idlimam, A. and Jamali, A., 2004. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica). Energy, 29(2): 211-224.
- Martynencko, A.I. and Yang, S.X., 2006. Biologically inspired neural computation for ginseng drying rate. Bisystems Engineering. 95(3): 385-396.
- Midilli, A., Kucuk, H. & Yapar, Z.A., 2002. A new model for single-layer drying. Drying Technology: An International Journal, 20(7): 1503-1513.
- Omid, M., Baharlooei, A. and Ahmadi, H., 2009. Modeling drying kinetics of pistachio nuts with multilayer feed-forward neural network. Drying Technology: An International Journal, 27(10): 1069-1077.
- Ozdemir, M. and Devres, Y.O., 1999. The thin layer drying characteristic of hazelnuts during roasting. Journal of Food Engineering, 42(4): 225-233.
- Poonnoy, P., Tansakul, A. and Chinnan, M., 2006. Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave vacuum drying. Journal of Food Science, 72(1): 42-47.
- Togrul, I.T. and Pehlivan, D., 2002. Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3): 209-216.
- Togrul, I.T. and Pehlivan, D., 2003. Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58(1): 23-32.
- Yaldiz, O., Ertekin, C. and Uzun, H.I., 2001. Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5): 457-465.