- Acevedo, A.F.G., Gomes, J.W.d.S., Avilez, A.A., Sarria, S.D., Broetto, F., Vieites, R.L. and Guimarães, M.L.C.S., 2023. Foliar salicylic acid application to mitigate the effect of water deficiency on potato (
Solanum tuberosum L.). Plant Stress, 7: 100135.
https://doi.org/10.1016/j.stress.2023.100135
- Agarwal, S., Sairam, R.K., Srivastava, G.C. and Meena, R.C., 2005. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plant, 49: 541-550. https://doi.org/10.1007/s10535-005-0048-z
- Alam, P., Balawi, T.A. and Faizan, M., 2022. Salicylic acid’s impact on growth, photosynthesis, and antioxidant enzyme activity of
Triticum aestivum when exposed to salt. Molecules, 28(1): 100.
https://doi.org/10.3390/molecules28010100
- Apon, T.A., Ahmed, S.F., Bony, Z.F., Chowdhury, M.R., Asha, J.F. and Biswas, A., 2023. Sett priming with salicylic acid improves salinity tolerance of sugarcane (
Saccharum officinarum L.) during early stages of crop development. Heliyon, 9(5): 1-14.
https://doi.org/10.1016/j.heliyon.2023.e16030
- Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156: 64-77.
https://doi.org/10.1016/j.plaphy.2020.08.042
- Arruda, T.F.D.L., Lima, G.S.D., Silva, A.A.R.D., Azevedo, C.A.V.D., Souza, A.R.D., Soares, L.A.D.A., Gheyi, H.R., Lima, V.L.A.D., Fernandes, P.D., Silva, F.D.A.D. and Dias, M.D.S., 2023. Salicylic acid as a salt stress mitigator on chlorophyll fluorescence, photosynthetic pigments, and growth of precocious-dwarf cashew in the post-grafting phase. Plants, 12(15): v2783.
https://doi.org/10.3390/plants12152783
- Badil, F.C., Barary, M., Shomeili, M. and Tahmasebi, Z., 2016. Alleviation of salinity effects by exogenous applications of salicylic acid in sugarcane (Saccharum officinarum L.) seedlings. Iranian Journal of Field Crops Research, 14(3): 449-459. https://jcesc.um.ac.ir/index.php/arable/article/view/44051
- Batista, V.C.V., Pereira, I.M.C., Paulo-Marinho, S.d.O., Canuto, K.M., Pereira, R.d.C.A., Rodrigues, T.H.S., Daloso, D.d.M., Gomes Filho, E. and de Carvalho, H.H., 2019. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant
Egletes viscosa. Environmental and Experimental Botany, 167: 103870.
https://doi.org/10.1016/j.envexpbot.2019.103870
- Bayat H., Alirezaie, M. and Neamati, H., 2012. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (
Calendula officinalis L.) under salinity stress. Journal of Stress Physiology and Biochemistry, 8(1): 258-267.
http://www.jspb.ru/issues/2012/N1/JSPB_2012_1_258-267.pdf
- Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A. and Abdelly, C., 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53: 185-194. https://doi.org/10.1007/s10725-007-9217-8
- da Silva, A.F., Sousa, V.F.D.O., dos Santos, G.L., Júnior, E.S.A., da Silva, S.L., de Macedo, C.E., de Melo, A.S. and Maia, J.M., 2018. Antioxidant protection of photosynthesis in two cashew progenies under salt stress. Journal of Agricultural Science, 10(10): 388-404. https://doi.org/10.5539/jas.v10n10p388
- Dong, C.J., Li, L., Shang, Q.M., Liu, X.Y. and Zhang, Z.G., 2014. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta, 240: 687-700. https://doi.org/10.1007/s00425-014-2115-1
- El-Esawi, M.A., Elansary, H.O., El-Shanhorey, N.A., Abdel-Hamid, A.M., Ali, H.M. and Elshikh, M.S., 2017. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8: 1-14.
https://doi.org/10.3389/fphys.2017.00716
- EL-Tayeb, M.A., 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-225. https://doi.org/10.1007/s10725-005-4928-1
- Emami Bisteghani, Z. and Bakhshandeh, A., 2021. Physiology of environmental stresses in medicinal plants. Publication of agricultural education. 444p (In Persian).
https://agrilib.areeo.ac.ir/book_9560.pdf
- Gharbi, E., Lutts, S., Dailly, H. and Quinet, M., 2018. Comparison between the impacts of two different modes of salicylic acid application on tomato (
Solanum lycopersicum) responses to salinity. Plant Signaling and Behavior, 13(5): 1469361.
https://doi.org/10.1080/15592324.2018.1469361
- Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Guneri bagci, E. and Cicek, N., 2007. Salysilic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (
Zea mays L.) grown under Salinity. Journal of Plant Physiology. 164: 728-736.
https://doi.org/10.1016/j.jplph.2006.07.011
- Hundare, A., Joshi, V. and Joshi, N., 2022. Salicylic acid attenuates salinity-induced growth inhibition in in vitro raised ginger (
Zingiber officinale Roscoe) plantlets by regulating ionic balance and antioxidative system. Plant Stress, 4: 100070.
https://doi.org/10.1016/j.stress.2022.100070
- Islam, A.T., Ullah, H., Himanshu, S.K., Tisarum, R., Cha-um, S. and Datta, A., 2022. Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. Scientia Horticulturae, 304: 111304.
https://doi.org/10.1016/j.scienta.2022.111304
- Islam, R.U. and Kumar, M., 2014. Extraction of total carotenoids from calendula officinalis and their effects on the oxidation stability of mustard oil. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(2): 142-144.
https://doi.org/10.1016/j.scienta.2022.111304
- Khalida, K.A. and Teixeira da Silva, J.A., 2010. Yield, essential oil and pigment content of
Colendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 126: 297-305.
https://doi.org/10.1016/j.scienta.2010.07.023
- Khan, M.S., Akther, T., Ali, D.M. and Hemalatha, S., 2019. An investigation on the role of salicylic acid alleviate the saline stress in rice crop (
Oryza sativa L.). Biocatalysis and Agricultural Biotechnology, 18: 101027.
https://doi.org/10.1016/j.bcab.2019.101027
- Liu, J., Qiu, G., Liu, C., Li, H., Chen, X., Fu, Q., Lin, Y. and Guo, B., 2022. Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life, 12(6): 886.
https://doi.org/10.3390/life12060886
- Mahdavian, K., 2023. Application of salicylic acid on chlorophyll, carotenoids, and proline in radish under salinity stress. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93(4): 809-818. https://doi.org/10.1007/s40011-023-01484-1
- Martin, E.C., Slack, D.C., Tannksley, K.A. and Basso, B., 2006. Effect of fresh and composted dairy manure applications on alfalfa yield and the environment in Arizona. Agronomy Journal, 98: 80-84.
https://doi.org/10.2134/agronj2005.0039
- Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y.H., Li, L. and Li, W.J., 2023. Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11: 100319.
https://doi.org/10.1016/j.stress.2023.100319
- Maruri-López, I., Aviles-Baltazar, N.Y., Buchala, A. and Serrano, M., 2019. Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 423: 1-11.
https://doi.org/10.3389/fpls.2019.00423
- Mohamed, H.I., El-Shazly, H.H. and Badr, A., 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. Plant Phenolics in Sustainable Agriculture, 1: 533-554. https://doi.org/10.1007/978-981-15-4890-1_23
- Naeem, M., Basit, A., Ahmad, I., Mohamed, H.I. and Wasila, H., 2020. Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanzen, 72: 393-402.
https://doi.org/10.1007/s10343-020-00521-7
- Razmi, N., Ebadi, A., Daneshian, J. and Jahanbakhsh, S., 2017. Salicylic acid induced changes on antioxidant capacity, pigments and grain yield of soybean genotypes in water deficit condition. Journal of Plant Interactions, 12(1): 457-464.
https://doi.org/10.1080/17429145.2017.1392623
- Sapkota, B. and Kunwar, P., 2024. A review on traditional uses, phytochemistry and pharmacological activities of
Calendula officinalis Linn. Natural Product Communications, 19(6): 1-22.
https://doi.org/10.1177/1934578X241259021
- Shakirova, F., Sakhabutdinova, A., Bezrukova, M., Fatkhutdinova, R. and Fatkhutdinova, D., 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164: 317-322.
https://doi.org/10.1016/S0168-9452(02)00415-6
- Sheteiwy, M.S., An, J., Yin, M., Jia, X., Guan, Y., He, F. and Hu, J., 2019. Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of
Oryza sativa seedlings. Protoplasma, 256: 79-99.
https://doi.org/10.1007/s00709-018-1279-0
- Singh, S., Prakash, P. and Singh, A.K., 2021. Salicylic acid and hydrogen peroxide improve antioxidant response and compatible osmolytes in wheat (Triticum aestivum L.) under water deficit. Agricultural Research, 10: 175-186. https://doi.org/10.1007/s40003-020-00490-3
- Stevens, J., Senaratna, T. and Sivasithamparam, K., 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49: 77-83. https://doi.org/10.1007/s10725-006-0019-1
- Szopa, A., Klimek-Szczykutowicz, M., Jafernik, K., Koc, K. and Ekiert, H., 2020. Pot marigold (Calendula officinalis L.)- A position in classical phytotherapy and newly documented activities. Acta Scientiarum Polonorum Hortorum Cultus, 19(3): 47-61. https://doi.org/ 10.24326/asphc.2020.3.5
- Tahjib‐Ul‐Arif, M., Siddiqui, M.N., Sohag, A.A.M., Sakil, M.A., Rahman, M.M., Polash, M.A.S., Mostofa, M.G. and Tran, L.S.P., 2018. Salicylic acid‐mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of Plant Growth Regulation, 37: 1318-1330. https://doi.org/10.1007/s00344-018-9867-y
- Urban, L., Lauri, F., Ben Hdech, D. and Aarrouf, J., 2022. Prospects for increasing the efficacy of plant resistance inducers stimulating salicylic acid. Agronomy, 12(12): 3151.
https://doi.org/10.3390/agronomy12123151
- Verma, P.K., Raina, R., Agarwal, S. and Kour, H., 2018. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharmaceutical and Biomedical Research, 4(2): 1-17. http://dx.doi.org/10.18502/pbr.v4i2.214
- Wani, A.B., Chadar, H., Wani, A.H., Singh, S. and Upadhyay, N., 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15: 101-123. https://doi.org/10.1007/s10311-016-0584-0
- Wen, B., Li, C., Fu, X., Li, D., Li, L., Chen, X., Wu, H., Cui, X., Zhang, X., Shen, H. and Zhang, W., 2019. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiology and Biochemistry, 142: 363-371. https://doi.org/10.1016/j.plaphy.2019.07.007
- Zhang, Y. and Li, X., 2019. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50: 29-36. https://doi.org/10.1016/j.pbi.2019.02.004
- Zhao, C., Zhang, H., Song, C., Zhu, J.K. and Shabala, S., 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1): 1-41. https://doi.org/10.1016/j.xinn.2020.100017