In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

1 Ph.D. student, Department of Horticulture, Aliabad Katoul Branch, Islamic Azad University, Gorgan, Iran

2 Department of Horticulture and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Horticulture, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Abstract

Salinity stress is one of the most important factors in reducing the crop yield in the world. The application of humic acid along with selenium can improve the plant yield under salinity stress conditions by increasing the antioxidant capacity. To evaluate the effects of humic acid and selenium application under salinity stress conditions in Calendula officinalis L., a factorial greenhouse experiment was conducted in a completely randomized design with three replications in Islamshahr city in 2018. The experimental treatments included sodium chloride (0, 50, and 100 mg l-1), humic acid (0, 100, and 200 mg l-1), and selenium (0, 5, and 10 mg l-1) and their combined effects. The results showed that increasing the salinity significantly reduced the fresh and dry weight of shoots and roots and number of flowers per plant. The foliar application of 200 mg l-1 humic acid and 10 mg l-1 selenium improved carotenoids content of the petals and total chlorophyll of the leaves at all salinity levels. Also, with increasing the sodium chloride level up to 100 mg l-1, the amount of proline increased significantly. Meanwhile, the interaction treatments of humic acid and selenium had significant effects (P≤0.0.1) on improving the activity of superoxide dismutase and peroxidase enzymes at different salinity levels. The highest amount of essential oil (1.37%) was obtained in the interaction treatment of 200 mg l-1 humic acid and 10 mg l-1 selenium under salinity stress of 50 mg l-1 sodium chloride. In general, the results of this study showed that the foliar application of 200 mg l-1 humic acid and 10 mg l-1 selenium could be effective in reducing the negative effects of salinity stress on  C. officinalis.

Keywords

Main Subjects

- Acosta-Motos, J.R., Fernanda Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Jesus Sanchez-Blanco, M. and Antonio Hernandez, J., 2017. Plant responses to salt stress: adaptive mechanisms. Journal of Agronomy, 7: 1-38.
- Aghighi Shahverdi, M., Omidi, H. and Tabatabaei, S.J., 2018. Effect of foliar application of selenium, boron and iron on some physiological traits and glycosides of stevia (Stevia rebaudiana Bertoni) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants, 33 (6): 1017-1033.
- Ahmadi, F. and Aminifard, M.H., 2018. Effects of foliar spraying humic acid on some morphological characteristics and flower yield of saffron (Crocus sativus L.). Journal of Saffron Research, 6(1): 17-26.
- Ahmadi, F., Aminifard, M.H., Khayyat, M. and Samadzade, A.R., 2017. Evaluation of humic acid and planting density on flower yield and vegetative characteristics of saffron (Crocus sativus L.). Iranian Journal of Medicinal and Aromatic Plants, 33 (2): 293-303.
- Al-Aghabary, K., Zhu, Z. and Shi, Q., 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and anti-oxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27: 2101-2115.
- Amiri, H. and Ghasemi Ramadanabad, Z., 2018. The effects of salinity on chemical composition of essential oil of Satureja rechingeri. Journal of Plant Research (Iranian Journal of Biology), 31(2): 248-257.
- Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1): 1-15.
- Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P. and Hamidpour, M., 2016. Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteriaand Zn to salinity stress. Acta Physiologiae Plantarum, 38(1): 281-288.
- Barghi, A. and Gholipouri, A., 2020. Effects of jasmonic acid and 24-epi brassinolid on quantitative and qualitative yield of Nigella sativa L. under salinity stress condition. Iranian Journal of Medicinal and Aromatic Plants Research, 36(5): 839-850.
- Bates, L.S., Waldren, R.P. and Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
- Bayer, W.F. and Fridovich, I., 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Analytical Biochemistry, 161(2): 559-566.
- Bolandnazar, S.A., Pirdashti, H.A, Tabatabai, S.J. and Qasemi, K., 2015. The effect of selenium and humic acid on growth, yield, some physiological traits and antioxidant power of garlic. Doctoral Thesis, University of Tabriz.
- Bybordi, A., 2016. Effect of zeolite, selenium and silicon on yield, yield components and some physiological traits of canola under salt stress conditions. Iranian Journal of Field Crop Research, 14(1): 154-170.
- Celikel, F.G. and Reid, M.S., 2002. Postharvest handling of stock (Matthiola incana). Journal of Horticultural Science, 37(1): 144-147.
- Chamani, A., Esmaeilpour, B., Pourbeyrami, Y., Malekilajayer, H. and Saadati, A., 2012. Investigation the effects of thidiazouron and humic acid on postharvest life of cut Alstroemeria aurantifolia cv. "Konyambe". Journal of Horticultural Science, 26(2): 152-147.
- Danaee, E. and Abdossi, V., 2019. Phytochemical and morphophysiological responses in basil (Ocimumbasilicum L.) plant to application of polyamines. Journal of Medicinal Plants, 18(69): 125-134.
- Daneshvar Rad, N., Sajedi, N.A. and Naieni, M.R., 2019. Effects of salicylic acid and selenium foliar application on salinity tolerance and essential oil yield of moldavian balm (Dracocephalum moldavica L.). Iranian Journal of Medicinal and Aromatic Plants Research, 34(6): 945-975.
- El-Gohary, A., Amer, H., Salem, S. and Hussine, M., 2019. Foliar application of selenium and humic acid changes yield, essential oil and chemical composition of Plectranthus amboinicus (Lour.) plant and its antimicrobial effects. Egyptian Pharmaceutical Journal, 18(4): 356-367.
- Emami Bistgani, Z., Hashemi, M., Dacosta, M., Craker, L., Maggi, F. and Morshedloo, M.R., 2019. Effect of salinity stress on physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135: 311-320.
- Ezhilmathi, K., Singh, V., Arora, P. and Sairam, R.K., 2007. Effect of 5-sulfocalicylic acid on antioxidant in relation to vase life of gladiolus cut flower. Plant Growth Regulation, 51: 99-108.
- Gazim, Z., Rezende, C., Fraga, S., Dias Filho, B., Nakamura, C. and Cortez, D., 2008. Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Brazilian Journal of Pharmaceutical Sciences, 44: 391-395.
- Ghassemi-Golezani, K., Hassanzadeh, N., Shakiba, M.R. and Esmaeilpour, B., 2020. Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology, 26: 101636.
- Gohari, G., Farzad Rasouli, F. and Zahedi, S.M., 2016. Evaluation of some growth characteristics, essential oil content and yield of sweet basil (Ocimum basilicum L.) in salinity stress condition and humic acid application. Journal of Agricultural Science and Sustainable Production, 27(2): 159-168.
- Guevara Moreno, O.D., Acevedo Aguilar, F. and Eunice Yanez, B., 2018. Selenium uptake and biotransformation and effect of selenium exposure on the essential and trace elements status: comparative evaluation of four edible plants. Journal of the Mexican Chemical Society, 62(2): 247-258.
- Hajiboland, R., Keivanfar, N., Jodmand, A., Rezaei, H. and Nezhadmohammad, Y., 2014. Effect of selenium treatment on drought tolerance of canola plant. Journal of Plant Research, 27(4): 557-568.
- Hasanuzzaman, M., Nahar, K. and Fujita, M., 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages: 25-87. In: Ahmad, P., Azooz, M.M. and Prasad, M.N.V., (Eds.). Ecophysiology and Responses of Plants Under Salt Stress. Springer, Hyderabad, 510p.
- Helali Soltanahmadi, F., Amerian, M.R., Ghiyasi, M. and Abbasdookht, H., 2018. Effects of seed priming on yield, yield components, and concentration of mineral phosphorus under drought stress in Calendula officinalis L. Iranian Journal of Medicinal and Aromatic Plants Research, 34(4): 565-578.
- Hormozinejad, E., Zolfaghari, M., Mahmoodi Sourestani, M. and Enayati Zamir, N., 2018. Effects of plant growth promoting rhizobactria and chemical fertilizer on growth, yield, flowering, physiological properties, and total phenolic content of Calendula officinalis L. Iranian Journal of Medicinal and Aromatic Plants Research, 34(4): 684-696.
- Jahid, A.M., Kumar, S., Thakur, P., Sharma, S., Kau Raman Preet, N., Kaur, D.P., Bhandhari, K., Kaushal, N., Singh, K., Srivastav, A. and Nayyar, H., 2011. Promotion of growth in mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biological Trace Element Research, 143(1): 530-539.
- Keling, H., Ling, Z., JiTao, W. and Yang, Y., 2013. Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Societatis Botanicorum Poloniae, 82(3): 193-197.
- Khademalhosseini, Z., Jafarian, Z., Roshan, V. and Ranjbar, G., 2018. Effect of water salinity on quantity and quality of biochemical characteristics of Mellissa officinallis L. Journal of Rangeland, 12(3): 370-379.
- Khalid, K.A. and Teixeira da Silva, J., 2012. Biology of calendula officinalis Linn: focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology, 6(1): 12-27.
- Khoram Ghahfarokhi, A., Rahimi, A., Torabi, B. and Maddah Hosseini, S., 2015. Effect of humic acid application and foliar spraying of compost tea and vermiwash on nutrient absorption and chlorophyll content of safflower (Carthamus tinctorius L.). Journal of Oil Plants Production, 2(1): 71-84.
- Khosravi, S., Baghizadeh, A. and Nezami, M.T., 2011. The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology and Biochemistry, 7(4): 80-87.
- Kiani, Z., Esmaeilpour, B., Hadian, J., Soltani Toolarood, A.A. and Fathololumi, S., 2014. Effect of organic fertilizers on growth properties nutrient absorption and essential oil yield of medicinal plant of spearmint (Mentha spicata L.). Journal of Plant Production, 21(4): 63-80.
- Mancarella, S., Orsini, F., Van Oosten, M.J., Sanoubar, R., Stanghellini, C., Kondo, S., Gianquinto, G. and Maggio, A., 2016. Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
- Mirzaie, M., Ladanmoghadam, A.R., Hakimi, L. and Danaee, E., 2020. Water stress modifies essential oil yield and composition, glandular trichomes and stomatal features of lemongrass (Cymbopogon citratus L.) inoculated with arbuscular mycorrhizal fungi. Journal of Agricultural Science and Technology, 22(6): 1575-1585.
- Mohammadi, A., Amini Dehaghi, M. and Fotokian, M.H., 2018. Effects of humic acid foliar application on the quantitative and qualitative characteristics of cumin (Cuminum cyminum L.) under different irrigation regimes. Iranian Journal of Medicinal and Aromatic Plants, 34 (1): 101-114.
- Molahoseini, H., Feizian, M., Davazdah Emami, S. and Mehdi Pour, E., 2018. Effects of silicone nano oxide coated with humic acid and salicylic acid on some morphological parameters and ionic composition of black cumin (Nigella sativa L.) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants, 34(4): 629-644.
- Mostofi, Y. and Najafi, F., 2005. Laboratory Manual of Analytical Techniques in Horticulture. University of Tehran, 136p.
- Narimani, R., Moghaddam M., Nemati, S.H. and Ghasemi Pirbaluti, A., 2019. Evaluation of salinity adjusted by using humic acid and ascorbic acid in medicinal plant of moldavian balm (Dracocephalum moldavica L.). Journal of Plant Research (Iranian Journal of Biology), 31(4): 955-971.
- Nasooti Miandoab, R., Samawat, S. and Tehrani, M.M., 2010. Properties of Humic Acid Fertilizer on Plant and Soil. Agriculture and Food, 101: 53-55.
- Nazerieh, H., Oraghi Ardebili, Z. and Iran Bakhsh, A.R., 2018. Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agriculturae Slovenica, 111(2): 357-368.
- Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R. and Lachaal, M., 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum, 32(2): 289-296.
- Parida, A.K. and Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety. 60: 324-349.
- Putter, J., 1974. Peroxidase: 685-690. Bergmeyer, H.U., (Ed.). Methods in Enzymatic Analysis (Vol. 4). Academic press, New York, 800p.
- Rahemi Kahrizaki, A., Rahimi, R., Gholizadeh, A., Gholamalipour Alamdari, E., Saboori, H. and Davoodi, S.H., 2018. The effect of plant growth promoning rhizobacteria and vermicompost on quality traits of druge marigold (Calendula officinalis L.). Iranian Journal of Medicinal and Aromatic Plants Research, 34(5): 711-723.
- Ramakrishna, A. and Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6: 1720-1731.
- Shahid, S.A., Zaman, M. and Heng, L., 2018. Soil salinity: historical perspectives and a world overview of the problem: 43-53. In Zaman, M., Shahid, S.A. and Heng, L., (Eds.). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer International Publisher, 164p.
- Shahsavari, M., Naderi, D. and Gheisari, M.M., 2019. Effects of organic nano-fertilizer and humic acid on biochemical characteristics and some essential oil of domask-rose (Rosa damascena Mill.). Iranian Journal of Medicinal and Aromatic Plants Research, 35(1): 134-144.
- Shekari, L., Kamelmanesh M.M., Mozafariyane-Meymandi, M. and Sadeghi, F., 2016. Effect of selenium on some morphological and physiological traits of spicy pepper. Journal of Horticultural Science, 29(4): 594-600.
- Skrypnik, L., Novikova, A. and Tokupova, E., 2019. Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants, 8: 458.
- Sofi, A., Ebrahimi, M. and Shirmohammadi, E., 2018. Effect of humic acid on germination, growth, and photosynthetic pigments of Medicago sativa L. under salt stress. Ecopersia, 6(1): 21-30.
- Soroori, S., Danaee, E., Hwmmati, Kh. and Ladan Moghadam, A.R., 2021. The metabolic response and enzymatic activity of Calendula officinalis L. to foliar application of spermidine, citric acid and proline under drought stress and in a post harvest condition. Journal of Agricultural Science and Technology, 23(6).
- Soshinkova, T.N., Radyukina, N.L., Korolkova, D.V. and Nosov, A.V., 2013. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russian Journal of Plant Physiology, 60: 41-54.
- Valdiani, A.R., Hassanzadeh, A. and Tajbakhsh, M., 2005. Study on the effects of salt stress in germination and embryo growth stages of the four prolific and new cultivars of winter rapeseed (Brassica napus L.). Pajouhesh and Sazandegi, 66: 23-32.
- Zaji, B., Khavarinejad, R.A., Saadatmand, S. and Iranbakhsh, A.R., 2019. Investigation of some morphological and physiological responses of Moldavian balm (Dracocephalum moldavica L.) to selenium under salinity. Journal of plant Environmental Physiology, 14(56): 13-27.
- Zrig, A., Tounectia, T., Abdelgawad, H., Hegab, M.M., Oueled Alia, S. and Khemir, H., 2016. Essential oils, amino acid and polyphenols changes in salt stressed Thymus vulgaris exposed to openfield and shade enclosure. Industrial Crop Production, 91: 223-230.