In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, Iran

Abstract

In order to study the mineral elements of Rubia tinctorum L. under salinity conditions, four levels of nitrogen fertilizer (0, 60, 120, 180) kg ha-1 in the form of urea, and four levels of phosphorous fertilizer (0, 60, 120, 180) kg ha-1 in the form of triple super phosphate were used. The study elements were nitrogen, phosphorus, sodium, calcium, iron, and zinc. The experiment was conducted in a research farm in Isfahan and was arranged as factorial based on a randomized complete block design with three replications. The results demonstrated that the effects of nitrogen and phosphorous fertilizers on element concentration were significant. Nitrogen and phosphorus fertilization could increase the content of N, P, Ca, Fe and Zn and decrease of Na and improved Rubia yield. The interaction between nitrogen and phosphorous fertilizers had more positive impacts on yield and nutrient accumulation as compared with simple effects. In the use of nitrogen and phosphorous fertilizers together, the maximum increase in yield of aerial parts was 0.43 kg m-2 (threefold more than that of the control) and the highest root yield was 0.78 kg m-2 (about twofold more than that of the control). The application of certain levels of fertilizers had notable effects on increasing nutrient concentration and yield under saline conditions. The optimum level of both urea and phosphate fertilizers was generally 180 kg ha-1 and if these levels of fertilizers are used together, it would give more desirable outcome.

Keywords

- احتشامی، م.ر. و ربیعی، م.، 1393. اثر تلفیق تیمار زیستی بذر و کود شیمیایی بر عملکرد و جذب عناصر غذایی شلغم علوفه‌ای (Brassica rapa L.). علوم و تحقیقات بذر ایران، 1(1): 66-51.
- امامی، ع.، 1375. روش‌های تجزیه گیاه (جلد اول). نشریه فنی شماره 982. سازمان تحقیقات آموزش ترویج کشاورزی، مؤسسه تحقیقات خاک و آب، 126 صفحه.
- امین‌پناه، ه. و سروش‌زاده، ع.، 1384. بررسی اثر کلسیم نیترات بر توزیع سدیم و پتاسیم در جوانه‌های برنج در شرایط شوری. زیست‌شناسی ایران، 18(2): 100-92.
- Allen, E.B. and Cunningham, G.L., 1983. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytologist, 93: 227-236.
- Anac, D., Eryüce, N., Gürbüuz, D., Eryüce, B., Kilic, C. and Tutam, M., 1999. Improved crop quality by nutrient management. Springer Netherlands, 39-41.
- Baghalian, K., Maghsodi, M. and Naghavi, M.R., 2010. Genetic diversity of Iranian madder (Rubia tinctorum L.) populations based on agromorphological traits, phytochemical content and RAPD markers. Industrial Crops and Products, 31(3): 557-562.
- Banakar, M.H. and Khorsandi, F., 2014. Salinity tolerance of Rubia tinctorum under field conditions as affected by two planting methods. American-Eurasian Journal of Agriculture & Environmental Sciences, 14(8): 757-762.
- Blömeke, B., Poginsky, B., Schmutte, C., Marquardt, H. and Westendorf, J., 1992. Formation of genotoxic metabolites from anthraquinone glycosides present in Rubia tinctorum L. Mutation Research, 265(2): 263-272.
- Bremner, J.M., 1996. Nitrogen-total: 1085-1122. In: Sparks, D.K., (Ed.). Methods of Soil Analysis: Chemical Methods Part 3. American Society of Agronomy, Madison, Wisconsin, 1390p.
- Bybordi, A., 2005. Zn in Soil and Plant Nutrients. Parivar Publications, Tabriz, 18p.
- Chapman, H.D. and Pratt F.P., 1961. Ammonium vandate-molybdate method for determination of phosphorus. Methods of Analysis for Soils, Plants and Water. California University, USA, 184-203.
- Dashtakian, K. and Bohrani, M.J., 2008. Effect of levels and resources of salinity on some agricultural characteristics and chemical composition of Rubia tinctorum. Agricultural Knowledge, 7: 63-68.
- Engelstad, O.P., 1985. Fertilizer Technology and Use. Soil Science Society of America, Madison, Wisconsin, 633p.
- Fedine, L.S. and Popova, A.V., 1996. Photosynthesis, photorespiration and proline accumulation in waterstressed pea leaves. Crop Science, 32(2): 213-220.
- Foy, C.D., 1983. Plant adaptation to mineral stress in problem soils. Iowa State Journal of Research, 57: 339-354.
- Gangloff, W.J., Westfall, D.G., Peterson, G.A. and Mortvedt, J.J., 2002. Relative availability coefficients of organic and inorganic Zn fertilizers. Journal of Plant Nutrition, 25: 259-273.
- Garthwaite, A.J., Von Bothmer, R. and Colmer, T.D., 2005. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany, 56: 2365-2378.
- Graciano, C., Goya, J.F., Frangi, J.L. and Guiamet, J.J., 2006. Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis. Forest Ecology and Management, 236(2-3): 202-210.
- Grattan, S.R. and Grieve, C.M., 1999. Mineral nutrient acquisition and response by plants grown in saline environments: 203-229. In: Pessarakli, M., (Ed.). Handbook of Plant and Crop Stress. Marcel Dekker, New York, 1254p.
- Grove, T.S., Thomson, B.D. and Malajczuk, N., 1996. Nutritional physiology of Eucalypts: uptake, distribution and utilization: 77-108. In: Attiwill, P.M. and Adams, M.A., (Eds.). Nutrition of Eucalypts. CSIRO Publishing, 448p.
- Haileselassie, B., Habte, D., Haileselassie, M. and Gebremeske, G., 2014. Effects of mineral nitrogen and phosphorus fertilizers on yield and nutrient utilization of bread wheat (Tritcum aestivum) on the sandy soils of Hawzen District, Northern Ethiopia. Agriculture, Forestry and Fisheries, 3(3): 189-198.
- Heidari, M., Nadian, H.A., Bakhshandeh, A.M., Alami-Saeed, K. and Fathi, G.A., 2007. Study effects of different salt and nitrogen levels on osmotic regulation and nutrient uptake in wheat. Journal of Science and Technology of Agriculture and Natural Resources, 40: 193-210.
- Karimian, N., 1995. Effect of nitrogen and phosphorus on zinc nutrition of corn in a calcareous soil. Journal of Plant Nutrition, 18(10): 221-226.
- Khogali, M.E., Dagash, Y.M.I. and EL-Hag, M.G., 2011. Nitrogen fertilizer effects on quality of fodder beet (Beta vulgaris var. Crassa). Agriculture and Biology Journal of North America, 2(2): 270-278.
- Lopez-Bellido, L., Castillo, J.E. and Fuentes, M., 1994. Nitrogen uptake by autumn sown sugar beet. Nutrient Cycling inAgroecosystems, 38(2): 101-109.
- Lopez-Lefebre, L.R., Rivero, R.M., Garcia, P.C., Sanchez, E., Ruiz, J.M. and Romero, L., 2001. Effect of calcium on mineral nutrient uptake and growth of tobacco. Journal of the Science of Food and Agriculture, 81: 1334-1338.
- Maas, E.V., 1990. Crop salt tolerance. Agricultural Salinity Assessment and Management. ASCE Manual and Reports on Engineering Practice, 71: 262-304.
- Mayland, H.F. and Sneva, F.A., 1983. Effect of soil contamination on the mineral composition of forage fertilized with nitrogen. Journal of Range Management, 38(3): 286-288.
- Mi, G., Chen, F. and Zhang, F., 2008. Physiological and genetic mechanisms for nitrogen-use efficiency in maize. Journal of Crop Science and Biotechnology, 10(2): 57-63.
- Munns, R. and Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
- Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J. and Ocampo-Velazquez, R.V., 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors, 13(8): 10823-10843.
- Noble, R.U. and Segars, W.I., 2001. Nitrogen interactions with phosphorus and potassium for optimum crop yield, nitrogen use effectiveness, and environmental stewardship. The Scientific World, 1(S2): 57-60.
- Orbán, N., Boldizsár, I., Szűcs Z. and Dános, B., 2008. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments, 77(1): 249-257.
- Pascual, I., Antolín, M.C., García, C., Polo, A. and Sánchez-Díaz, M., 2004. Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biology and Fertility of Soils, 40(5): 291-299.
- Rashid, M. and Iqbal, M., 2012. Effect of phosphorus fertilizer on the yield and quality of maize (Zea mays L) fodder on clay loam soil. Journal of Animal and Plant Sciences, 22(1): 199-203.
- Rastgou, B., Ebadi, A. Vafaie, A. and Moghadam, H., 2013. The effects of nitrogen fertilizer on nutrient uptake, physiological traits and yield components of safflower (Carthamus tinctorius L.). International Journal of Agronomy & Plant Production, 4(3): 355-364.
- Rayan, J.R., Estefan, G. and Rashid, A., 2001. Soil and Plant Analysis Laboratory Manual. ICARDA, Syria, 244p.
- Sepaskhah, A.R. and Beirouti, Z., 2009. Effect of irrigation interval and water salinity on growth of madder (Rubia tinctorum L.). International Journal of Plant Production, 3(3): 1-16.
- Syers, J.K., Johnston, A.E. and Curtin, D., 2008. Efficiency of soil and fertilizer phosphorus use. FAO fertilizer and plant nutrition bulletin 18, Chapter 1, page 2.
- Takkar, P.N., Chhibba, I.M. and Mehta, S.K., 1989. Twenty Years of Co-ordinated Research on Micronutrients in Soils and Plants (1967-1987). ICAR, New Delhi.
- Westendorf, J., Pfau, W. and Schulte, A., 1998. Carcinogenicity and DNA adduct formation observed in ACI rats after long-term treatment with madder root, Rubia tinctorum L. Carcinogenesis, 19(12): 2163-2168.