In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

1 MSc. Student, Department of Agriculture, Medicinal Plants and Drug Institue, Shahid Beheshti University, Tehran, Iran

2 Department of Agriculture, Medicinal Plants and Drug Institue, Shahid Beheshti University, Tehran, Iran

3 Department of Phytochemistry, Medicinal Plants and Drug Institue, Shahid Beheshti University, Tehran, Iran

Abstract

Secondary metabolites play an important role in plant responses to environmental stresses and some of these compounds are significantly increased under stress conditions. The use of biotic and abiotic elicitors for promoting the production of secondary metabolites reduces the processing time to achieve high concentrations of the metabolite. In this study, the effects of pathogenic fungus, Rhizoctonia solani (AG2-2) SBUka2, as biotic elicitor, were studied to better understanding of plant reactions to microorganisms and enhance yield and quality of secondary metabolites of Thymus daenensis in tissue culture. In this way, rosmarinic acid and caffeic acid contents of two ecotypes (Ilam and Isfahan) of T. daenensis were determined by High Performance Thin Layer Chromatogharapghy (HPTLC), while essential oil variations were studied by Gas Chromatoghraphy-Mass Spectrometry (GC-MS). The results showed that in the presence of R. solani, rosmarinic acid content of inoculated plant was decreased by 26.82% and 8.25% in Ilam and Isfahan ecotypes, respectively whereas caffeic acid content decreased to 4.51 and 4.16, respectively. The analysis of essential oils exhibited that in the presence of R. solani, the yield of essential oils increased by 33% and 20% in Isfahan and Ilam types, respectively. In addition, the content of some essential oil compositions such as thymol and carvacrol were increased in infected plants whereas other compounds such as para-cymene and gama-terpinene were decreased.

Keywords

- امیدبیگی، ر.، 1383. ﺗﻮﻟﻴﺪ و ﻓﺮآوری ﮔﻴﺎﻫﺎن داروﻳﻲ (ﺟﻠﺪ ﺳﻮم). اﻧﺘﺸﺎرات آﺳﺘﺎن ﻗﺪس رﺿﻮی، مشهد، 424 ﺻﻔحه.
- جم‌زاد، ز.، 1388. آویشن‌ها و مرزه‌های ایران. انتشارات مؤسسه تحقیقات جنگلها و مراتع کشور، تهران، 171 صفحه.
- حسینی، م.، 1391. غربالگری ریزوباکتری‌های بدست آمده از آویشن دنایی (Thymus daenensis) برای کنترل بیولوژیک بیماری پوسیدگی ریزوکتونیایی ریشه آن. پایان‌نامه کارشناسی ارشد، علوم باغبانی و گیاه‌پزشکی، تهران، 100 صفحه.
- سفیدکن، ف. و رحیمی بیدگلی، ع.، 1381. بررسی تغییرات کمّی و کیفی اسانس آویشن کوهی (Thymus kotschyanus) در دوره رشد گیاه و با روشهای مختلف تقطیر. تحقیقات گیاهان دارویی و معطر ایران، 15: 21-1.
- شوریابی، م.، 1391. اهلی کردن گیاه آویشن دنایی: بررسی تنوع مورفولوژیکی، فیتوشیمیایی، پایداری صفات کمّی و کیفی و ریزازدیادی. پایان‌نامه کارشناسی ارشد، پژوهشکده گیاهان دارویی، شهید بهشتی، تهران، 152 صفحه.
- محمودی، س.ب.، مصباح م. و علیزاده ع.، 1383. تنوع در بیماریزایی جدایه‌های Rhizoctonia solani چغندر قند. بیماری‌های گیاهی، 3(40): 280-253.
- Adams, R.P., 2007. Identification of Essential oils Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corporation, USA, 804p.
- Al-Amier, H., Mansour, B.M.M., Toaima, N., Shetty, K. and Craker, L., 2005. Stimulation of high biomas, rosmarinic acid, and total phenolics in tissue cultures of pennyroyal in response to Pseudomonas mucidolens. Journal of Herbs, Spices & Medicinal Plants, 11(3): 13-24
- Baskan, S., Öztekin, N. and Bedia Erim, F., 2007. Determination of carnosic acid and rosmarinic acid in Sage by capillary electrophoresis. Food Chemistry, 101(4): 1748-1752.
- Benhamou, N., 1996. Elicitor-induced plant defence pathways. Trend in Pharmacological Sciences, 1: 233-240.
- Bensalim, S., Nowak, J. and Asiedu, S.K., 1998. Temperature and pseudomonad bacterium effects on in vitro and ex vitro performance of 18 clones of potato. American Journal of Potato Research, 75(3): 145-152.
- Bernath, J., 1986. Production ecology of secondary plants product: 185-234. In: Craker, L.E. and Simon, J.E., (Eds.). Herbs, Spices and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology (Herbs, Spices, and Medicinal Plants) (Vol 1). Oryx Press, Arizona, 359p.
- Bernath, J., 2002. Strategies and recent achievements in selection of medicinal and aromatic plants. Acta Horticulture, 576p.
- Briskin, D.P., 2000. Medicinal plant and phytomedicines. Plant Physiology, 125: 507-514.
- British Pharmacopoeia., 1993. Her Majesty's Stationary Office, London, 300p.
- Chen, H., Chen, F., Chiu, F.C.K. and Lo, C.M.Y., 2001. The effect of yeast elicitor on the growth secondary metabolism and of hairy root cultures of Salvia miltiorrhiza. Enzyme and Microbial Tecnology, 28: 100-105.
- Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J., 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124: 803-814.
- Crocoll, C., 2011. Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme. Diss. PhD Thesis, Friedrich Schiller Universität.
- Dixon, R.A., 2001. Natural products and plant disease resistance. Nature, 411: 843-847.
- Harborne, J.B., 2001. Twenty-five years of chemical ecology. Natural Product Reports, 18: 361-379.
- Jones, J.D.G. and Dangl, J.L., 2006. The plant immune system. Nature, 444: 323-329.
- Lotze, M.T., Zeh, H.J., Rubartelli, A., Sparvero, L.J., Amoscato, A.A., Washburn, N.R., DeVera, M.E., Liang, X., Tör, M. and Billiar, T., 2007. The grateful dead: damage associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunological Reviews, 220: 60-81.
- Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G. and Miersch, O.,2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceeding of the National Academy of Sciences, 102(30): 10736-10741.
- Mackey, D. and McFall, A.J., 2006. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Molcular Microbiology, 61: 1365-1371.
- Mizukami, H., Ogawa, T., Ohashi, H. and Ellis, B.E., 1992. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Reports, 11: 480-483.
- Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15: 473-497.
- Naoumkina, M.A., He, X. and Dixon, R.A., 2008. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8: 132.
- Ramachandra Rao, S. and Ravishankar, G.A., 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20: 101-153.
- Reich, E. and Schibli, A., 2006. High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants. Thieme Medical Publishers, 197p.
- Ribera A.E. and Zuñiga, G., 2012. Induced plant secondary metabolites for phytopatogenic fungi control: a review. Journal of Soil Science and Plant Nutrition, 12(4):893-911.
- Selmar, D., 2008. Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung-vTI Agriculture and Forestry Research, 58: 139-144.
- Vitorino, L.C., Silva, F.G., Lima, W. C., Soares, M.A., Pedroso, R.C.N., Silva, M.R., Dias, H.J., Crotti, A.E.M., Silva, M.L.A., Cunha, W.R., Pauletti, P.M. and Januário, A.H., 2013. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro microplants. Quimica Nova, 36(7): 1014-1020.
- Walton, N.J. and Brown, D.E., 1999. Chemical from Plants Perspectives on Plant Secondary Products. World Scientific Publishers, 425p.