In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

1 M.Sc. student in Medicinal and Aromatic Plants, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Using stimulants is an efficient way to increase the production of secondary metabolites of medicinal plants under in vivo and in vitro conditions. The present study aimed to investigate the effect of NaCl (0 and 50 mM), salicylic acid, and methyl jasmonate (each in 0 and 100 μM) in solid and liquid culture media on the biochemical properties and phenylalanine ammonia-lyase (PAL) activity of stevia callus under in vitro conditions. This study was conducted in a completely randomized design with a two-factor factorial arrangement in four replications. The stimuli used, culture medium and their interactions had a significant effect on the measured traits. The highest amount of phenol and flavonoid production was observed in salicylic acid 100 + salinity 50 and salinity 50 treatments in solid culture medium. Treatments including salinity 50, salicylic acid 100 + salinity 50 and methyl jasmonate 100 + salinity 50 in the solid medium increased PAL enzyme activity compared to other treatments. PAL enzyme, phenol and flavonoid were positively correlated each other. The 50 mM salinity treatment also increased proline amino acid content. Therefore, in order to improve the production of secondary compounds such as phenol, flavonoids and also PAL enzyme activity in stevia, a combination of salicylic acid (100 μM) and salinity (50 mM) is recommended under solid culture medium conditions.
 

Keywords

- Abdul Jaleel, C., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S. and Panneerselvam, R., 2009. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constrains. Acta Physiologiae Plantarum, 31(3): 427-436.
- Abou-Arab, E.A., Abou-Arab, A.A. and Abu-Salem, F.M., 2010. Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana bertoni plant. African Journal of Food Science, 4(5): 269-281.
- Achnine, L., Blancaflor, E.B., Rasmussen, S. and Dixon, R.A., 2004. Colocalization of
L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. The Plant Cell, 16: 3098-3109.
- Ali, M.B., Hahn, E.J. and Paek, K.Y., 2007. Methyl jasmonat and salicylic acid induced oxidative stress and accumulation of phenolic in Panax ginseng Bioreactor root suspension culture. Journal of Molecules, 12: 607-621.
- Andi, S., Taguchi, F., Toyoda, K., Shiraishi, T. and Ichinose, Y., 2001. Effect of methyl jasmonate on harpin induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured by-2 cells. Plant Cell Physiology, 42(4): 446-449.
- Arshi, A., Abdin, M.Z. and Iqbal, M., 2002. Growth and metabolism of senna as affected by salt stress. Biologia Plantarum, 45(2): 295-298.
- Azarpour, E., Motamed, M.K. and Bozorgi, H.R., 2014. Stevia cultivation and promotion. Lahijan of Islamic Azad University Press, Lahijan.
- Babel, P., Devpura, V. and Purohit, S.D., 2014. Salicylic acid induced changes in growth and some biochemical characteristics in vitro cultures shoots of Chlorophytum borivilianum Sant. Et Fernand. International Journal of Recent Scientific Research, 5(4): 774-779.
- Bagal, U.R., Leebens Mack, J.H., Walter Lorenz, W. and Dean, J.F.D., 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13(3): 1471-2164.
- Bates, L., 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
- Bourgaud, F., Gravot, A. and Goniter, E., 2002. Production of plant secondary metabolites. Plant Science 161: 839-851.
- Chen, J.Y.W., Kong, P.F., Pan, W.F., Wan, Q.H. and Huang, W.D., 2006. Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. Journal of Plant Physiology, 163(2): 115-127.
- Dash Agha, Z., Mazaheri Tirani, M. and Ghasemi Khorasgani, M., 2014. The effect of acid-salicylic on some growth and biochemical parameters of wheat and maize under salt stress in laboratory conditions. Journal of Crop Production and Processing, 4(11): 207-216.
- Delavari Parizi, M., 2010. The effects of Salicylic acid and salinity stress on the some physiological and biochemical changes in Ocimum basilicum L. Master thesis, Department of Biology, Payame Noor University.
- Dos Santos, V.L., de Souza Monteiro, A., Braga, D.T. and Santoro, M.M., 2009. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. Journal of Hazardous Material, 161: 1413-1420.
- Ehsanpour, A. and Amini, F., 2001. Plant Cell and Tissue Culture. JDM Press, 181p.
- Esam, A.H. and Esam M.A., 2011. Effect of mannitol and sodium chloride on some total secondary metabolites of fenugreek calli cultured in vitro. Plant Tissue Culture and Biotechnology, 21(1): 35-43.
- Gallao, M.I., Cortelazzo, A.L., Salema Fevereiro, M.P. and Brito, E.S., 2010. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells. Brazilian Archives of Biology and Technology, 53(2): 8-18.
- He, Y. and Zhu, Z.J., 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52(4): 792-795.
- Horbowicz, M., Chrzanowski, G., Koczkodaj, D. and Mitrus, J., 2011. The effect of methyl jasmonate vapors on concentration of phenolic compounds in seedlings of commom buckwheat (Fagopyrume sculentum Moench). Acta Societiatis Botanicorum Poloniae, 80(1): 5-9.
- Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.H., Yu, J.Q. and Chen, Z., 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development and response to environmental stress. Plant Physiology, 153(4): 1526-1538.
- Jacobo-Velázquez, D.A., Martínez-Hernández, G.B., Del C Rodríguez, S., Cao, C.M. and Cisneros-Zevallos, L., 2011. Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12): 6583-6593.
- Jain, P., Kachhwaha, S. and Kothari, S.L., 2009. Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana Bertoni by using high copper levels in the culture medium. Scientia Horticulturae, 119(3): 315-319.
- Koushesh, M., Arzani, K. and Barzegar, M., 2012. Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. Journal of Agricultural and Food Chemistry, 60: 8947-8953.
- Mirza Masoumzadeh, B., Imani, A.A. and Khayamaim, S., 2012. Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Annals of Biological Research, 3(12): 5453-5456.
- Mizukami, H., Tabira, Y. and Ellis, B.E., 1993. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Reports, 12(12):
706-709.
- Myung-Min, H., Trick, H.N. and Rajasheka, E.B., 2009. Secondary metabolism and antioxidant are involved in environmental adaptation and stress tolerance in lettuce. Journal of Plant Physiology, 166: 180-191.
- Neelam, M., Rahul, M., Ajiboye, M., Kafayat, Y. and Lateefat, Y., 2014. Salicylic acid alters antioxidant and phenolic metabolism in Catharanthus roseus grown under salinity stress. African Journal of Traditional, Complementry and Alternative Medicines, 11(5): 118-125.
- Niknam, V., Bagherzadeh, M., Ebrahimzadeh, H. and Sokhansanj, A., 2004. Effect of NaCl on biomass and contents of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro. Biologia Plantarum, 48: 613-615.
- Niknam, V., Razavi, N., Ebrahimzadeh, H. and Sharifizadeh, B., 2006. Effect of NaCl on biomass, protein and proline contents and antioxidant enzymes in seedlings and calli of two Trigonella species. Biologia Plantarum, 50(4): 591-596.
- Raman, V. and Ravi, S., 2011. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiologiae Plantarum, 33(3): 1043-1049.
- Rao, R.S. and Ravishankar, G.A., 2002. Plant tissue cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20(2): 101-153.
- Rezazadeh, A., Ghasemnezhad, A. and Barani, M., 2012. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L.) leaves. Journal of Medicinal Plant, 63: 242-252.
- Rhodes, D., Nadolska-Orczyk, A. and Rich, P.J., 2002. Salinity, osmolytes compatible solutes: 181-204. In: Lauchli, A. and Luttge, U., (Eds.). Salinity: Environment-Plants-Molecules. Kluwer Academic Publ., Boston, 552p.
- Sairam, R.K., Tyagi, A. and Chinnusamy, V., 2006. Salinity tolerance: cellular mechanisms and gene regulation: 121-176. In: Huang, B., (Ed.). Plant-Environment Interactions. CRC Press, Boca Raton, FL, 416p.
- Samadi, S., 2013. Effect of elicitors (salicylic acid, methyl jasmonate) on biochemical conditions of Cynara scolymus. M.Sc. thesis. Department of Agricultural Science and Natural Resourses, The Gorgan University.
- Saunders, J.A. and Mcclure, J.W., 1974. The suitability of a quantitive spectrophotometric assay for phenylalanine ammonia lyase activity in barely, buckwheat and pea seadlings. Journal of Plant Physiology, 54: 412-413.
- Shirazi, Z., Piri, Kh., Mirzaie Asl, A. and Hasanloo, T., 2012. Glycyrrhizin and isoliquiritigenin production by hairy root culture of Glycyrriz glabra. Journal of Medicinal Plants Research, 31:
4640-4646.
- Simaei, M., Khavari-Nejad, R.A. and Bernard, F., 2012. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in nacl-stressed soybean plants. American Journal of Plant Sciences, 3: 1495-1503.
- Sonja, G., Maury, S., Delaunay, A., Spasenoski, M., Joseph, C. and Hagege, D., 2007. Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Organ Culture, 89: 1-13.
- Toor, R.K. and Savage, G.P., 2005. Antioxidant activities in different fractions of tomato. Food Research International, 38: 487-494.
- Tripathi, L. and Tripathi, J.N., 2003. Role of biotechnology in medicinal plants. Tropical Journal of Pharmaceutical Research, 2: 243-253.
- Wang, J.W. and Wu, J.Y., 2010. Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Application Microbiology Biotechnology, 88: 437-449.
- Yu, Z.Z., Fu, C.X., Han, Y.S., Li, Y.X. and Zhao, D.X., 2006. Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnology Letter, 28: 1027-1031.
- Zhao, J., Davis, L.C. and Verpoorte, R., 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4): 283-333.