In collaboration with Scientific Association of Iranian Medicinal Plants

Document Type : Research Paper

Authors

Biology Department, Teachers Education University, Tehran, Iran

Abstract

Plants produce a diverse array of secondary metabolites. These compounds may be synthesized during normal growth and development and accumulating only in response to pathogen attack or stress. Interest in these molecules stems from their medicinal properties, antimicrobial activity and their likely role as determinats of plant disease resistance. Daisy (Bellis perennis L.) accumulates secondary compounds (triterpenoid saponins and anthocyanins) in response to SA and pathogens. The results of the research indicates that the amount of secondary compounds (saponins and anthocyanins) in treated plants with SA were more than in the control plants. The amount of compounds in infected plants and without SA was more than in the control plants. When infected plants were treated with SA, an increase of compounds was shown in plants. The peaks observed in HPLC and their comparision with compounds standard confirms the results mentioned above. It is concluded that SA have significantly reduced disease severity and increase the amount of secondary compounds in infected and non-infected Daisy plants.

Keywords

- استریت، ر.، 1373. تشخیص بیماریهای گیاهی. ترجمه بهروز جعفر پور، ماهرخ فلاحتی رستگار. مشهد، انتشارات جهاد دانشگاه.
- زرگری، ع.، 1371. گیاهان دارویی. تهران، دانشگاه تهران، ج. 3.
- Adamse, P., 1988. Mutants as an aid to the study of higher plant photomorphogenesis, PhD Thesis, AgricultureUniversity, Wageningen, The Netherlands.
- Akinwunmi, O., 2001. The plant defense activator acibenzolar-s-methyl primes cowpea [Vigna unguiculata (L.) Walp] seedlings for rapid induction of resistance, Physiol. Mol. Plant Pathol, 58: 199-208.
- Brisson, L. F., Tenhaken, R. and Lamb, C., 1994. Functions of oxidative cross-linking of cell wall structural protein in plant disease resistance, Plant Cell, 6: 1703-1712.
- Bruce, R. J. and West, C.A., 1988. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castorbean. Plant Physiol, 91: 889-897.
- Cameron, Robin k., 2000. Salicylic acid and its role in plant defense responses: what do we really know?. Physiological and Molecular Plant Pathology, 56: 91-93.
- Chalker-Scott, L., 1999. Environmental significance of anthocyanins in plant stress response, Photochemistry and Photobiology, 70: 1-9.
- Chappell, J. and Nable, R., 1987. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor, Plant Physiol, 85: 469-473
- Christie, P.J., Alfenito M.R. and Walbot, V., 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings, Planta, 194: 541-549.
- Clive, L., Sze-Chung and Nicholson, R., 1998. Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls implication for a compensatory role in the defense response, Plant Physiol, 116 : 979-989.
- Coley, P.D. and Kusar, T. A., 1996. Anti-Herbivore defences of young tropical leaves: physiological constraints and ecological tradeffs, In: SS. Mulkey, RL. Chazdon and Al. Smith eds. TropicalForest Plant Ecophysiology. New York: Chapman and Hall, 305-335.
- Cooper-Drive, G. and Bhattacharya, M., 1998. Role of phenolics in plant evolution, Phytochemistry, 49: 1165-1174.
- Deikman J. and Hammer, P.E., 1995. Induction of anthocyanin accumulation by cytokinin in Arabidopsis thaliana, Plant Physiology, 108 (1): 47-57.
- Degra, L., Salvi, G., Marrioti, D., De Lorenzo, D. and Cervone, F., 1988. A poly-galacturonase-inhibiting protein in alfalfa callus cultures, J. Plant Physiol, 133: 364-371.
- Dixon, R.A. and Paiva, N.L., 1995. Stress-Induced phenylpropanoid metabolism, Plant Cell, 7: 1085-1097.
- Enyedi, A.J., Yalpani, N., Silverman P. and Raskin, I., 1992. Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus, Proc. Natl. Acad. Sci. USA, 89: 2480-2484.
- Garcia-Perez, M. D., Egea, C. and Candela, M. E., 1998. Defense response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiol. Plant, 103: 527-533.
- Gershenzon, J. and Croteau, R., 1991. Terpenoids. In.GA. Rosenthal and MR. Berebaum, eds. Herbivores: Their Interaction with Secondary Plant Metabolites, Vol. I. The Chemical Participants, 2nd edn. San Diego: Academic Press, 165-219.
- Gould, K. S., Kuhn, D. N., Lee, D.W. and Oberbauer, S. F., 1995. Why leaves are sometimes red?. Nature, 378: 241-242.
- Hammerschmidt, 1999. Induced disease resistance how to induced stop pathogens, Physiol. Mol. Plant Pathol, 55: 77-84.
- Harrison, B.J. and Strickland, R.G., 1980. Precursors and genetic control of pigmentation V. Initiation of anthocyanin synthesis in Antirrhinum majus by Botrytis cinerea, Heredity, 44: 103-109.
- Heim, D., Nicholson, R.L., Pascholati, S.F., Hagerman A.E. and Billet, W., 1983. Etiolated maize mesocotyls: A tool for investigating disease intractions, Phytopathology, 73: 424-428 .
- Hipskind, J., Woodand, K. and Nicholson, R.L., 1996. Localized stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant to Bipolaris maydis Race O. Physiol Mol Plant Pathol, 49 : 247-256. 
- Hostettman, K. A. and Marston, A., 1991. Saponins (CambridgeUniv. Press, Cambridge, UK).
- Klaper, R., Frankel, S. and Berenbaum, M. R., 1996. Anthocyanin content and UV-B sensitivity in Brassica rapa, Photochemistry and photobiology, 63: 811-813.
- Kombrink, E. and  Hahlbrock,  K., 1990. Rapid, Systemic repression of the synthesis of ribulose 1,5-bisphosphate carboxylase small-subunit mRNA in fungus-infected or elicitor-treated potato leaves, Planta, 181: 216-219.
- Kombrink, E., Hahlbrock, K., Hinze, K. and Schroder, M., 1991. Molecular responses of potato to infection by Phytophthora infestans .In C.J. Smith. Ed, Biochemistry and Molecular Biology of Plant Pathogen Interactions. Oxford University Press, Oxford, UK, 237-254
- Lee, D. W., 1986. Unusual Strategies of Light Absorption in Rain Forest Herbs. In: TJ. Givnish, ed. On the Economy of Plant Form and Function. CambridgeUniversity Press, 105-131.
- Malamy,  J. and Klessing, D.F., 1992. Salicylic acid and plant disease resistance, Plant J., 2 : 643-654.
- Maleck, K. and Lawton, K., 1998. Plant Strategies for Resistance to Pathogens. Current Opinion in Biotechnology, 9:  208-213.
- Mars, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V. A., 1995. Glutathione S- Transferase Involved in Vacuolar Transfer Encoded by the Maize gene Bronze-2. Nature, 375: 397-400.
- Mealem- Beno, D., Tamari, G., Leitner- Dagan, Y.L., Borochov, A. and Weiss, D., 1997. Suger-dependent gibberellin- induced chalcone synthase gene expression in Petunia corollas. Plant Physiol, 113: 419-424.
- Nugroho, L. H., Verberne, M. C. and Verpoorte, R., 2001. Salicylic acid produced by isochorismate synthase and isochorismate pyruvate lyase in various parts of constitutive salicylic acid producing tobacco plants, Plant Sci, 161: 911-915.
- Nugroho, L. H., Peltenburg-Looman, A. M. G., Verberne, M. C. and Verpoorte, R., 2002. Is accumulation of sesquiterpenoid phytoalexins induced in tobacco plants constitutively producing salicylic acid?. Plant Science, 162: 989-993.
- Osbourn, A. E., 1996. Saponins and plant defence- a soap story. Trends in Plant Sci, 1:4-9.
- Osbourn, A. E., 1996. Preformed antimicrobial compounds and plant defense against fungal attack, Plant Cell, 8: 1821-1831.
- Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. and Osbourn, A. E., 1999. - Compromised Disease Resistance in Saponin-Deficient Plants. PNAS, 96: 12923-12928.
-  Paxton, J. D., 1981. Phytopathol Z, 101: 106-109.
- Pinarosa, A. and Aldo, T., 1995. Acetylenes and terpenoids of Bellis perennis, Phytochemistry, 40: 141-147.
- Price, K. R., Johnson, I. T. and Fenwick, G. R., 1987. CRC Crit. Rev. Food. Nutr, 26: 27-133.
- Raskin, I., 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol, 43: 439-463.
- Reddy, V.S., Gould, K.V., Sharma, R. and Reddy, A.R., 1994. Ultraviolet-B-responsive anthocyanin production in rice is associated with a specific phase of phenylalanine ammonia lyase biosynthesis, Plant Physiol, 105: 1059-1066.
- Schonbeck, F. and Schlosser, E., 1976. In Physiological plant pathology, eds. Heitefuss, R. and Williams, P. H. (Springer, Berlin), 653-678.
- Schopke, T., Wray, V., Rzazewska, B. and Hiller, K., 1991. Bellis saponins BA1 and BA2 acylated saponins from Bellis perennis, Phytochemistry, 30: 627-631.
- Thain, J. F., Doherty, H. M., Bowles, D. J. and Wildon, D. C., 1990. Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells, Plant Cell and Enviroment, 13: 569-574.
- Tschesche, R. and Wulff, G., 1972. Chemie und biologie der saponine, Prog. Chem. Org. Nat. Prods, 30: 462-606.
- VanEtten, H. D., Manfield, J. W., Bailey, J. A. and Farmer, E. E., 1994. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”, Plant Cell, 6: 1101-1122.
- Verberne, M. C., Verpoorte, R., Bol, J. F., Mercado-Blanco, J. and Linthorst, J. M., 2000. Overproduction of salicylic acid in plants by bacterial transgenes results in enhanced resistance to pathogens, Nat. Biotechnol, 18: 779-783.
- White, R. F., 1979. Acetylsalicylic Acid (Aspirin) Induces Resistance to Tomato Mosaic Virus in Tobacco. Virology, 99: 410-412.
- White, R. F., Rybicki, E. P., Vonwechman, M. B., 1987. Detection of PR1-type Proteins in amaranthcaceae, chenopodiaceae, graminae and solanaceae by immunoelectrobloting, Journal of General Virology, 68: 2043-2048.
- Woltering, E.J. and Somhorst, D., 1990. Regulation of anthocyanin synthesis in cymbidium flowers: effects of emasculation and ethylene, J. Plant Physiol., 136:  295-299.
-Yamasaki, H., 1997. A function of color, Trends in Plant Science, 2: 7-8.