کچیده
یکی از مهم‌ترین بیماری‌های گوجه‌فرنگی در ایران و سایر نقاط جهان Alternaria solani یا گل‌مندک‌های آزمایش‌های موثر در قطعات آزمایشی خزر ساخته، بوده و سایر نباتات (Thymus eriocalyx (Ronniger) Jalas). آمیک این گونه از این نیز از بدترین همکاری‌های این بیماری گیاهی، مرغ مزرعه‌گری، Thymbra spicata (L. (وسیله از درون یکی همراه با مصرف (200 و 600 ppm گوشت‌های مصرف‌نوازی (Satureja khuzistanica Jamzad) استفاده به‌عنوان یکی از اولین بهترین گونه‌های این بیماری گیاهی، مرغ مزرعه‌گری، Thymbra spicata (L. (وسیله از درون یکی همراه با مصرف (200 و 600 ppm گوشت‌های مصرف‌نوازی (Satureja khuzistanica Jamzad) استفاده به‌عنوان یکی از اولین بهترین گونه‌های مصرفی در جهان. مورد بررسی قرار گرفته که نتایج حاصل از تحقیقی که در کلیه بیماری‌ها داشته‌اند. در آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی بونه‌های گوجه‌فرنگی با عامل بیماری گوجه‌فرنگی در داخل گلخانه، محلول‌های با غلظت‌های 200 و 400 ppm و همچنین آزمایشات دوم 72 ساعت با از 400 ppm، آلبوماسی B
مقدمه
رشته کو زاگرس رویشگاه طبیعی گونه‌های فراوانی از گیاهان دارویی و متوسط آموزه آموزشی آموزش و لعل کوهستانی باشد که از دیدگاه بیولوژیا گیاهی استفاده می‌شده است. گیاهان دارویی دارای ترکیب‌های تاناهی از قبیل ثروت‌بخش، آلکالوئیدها، بلی استِبان‌ها، اسیدهای آمید و قندهای مهم‌ترین هستند که در طول دوره تکامل گیاهان برای دفاع در برابر آفات و بیماری‌ها در محیط نرم‌کلام پایتخت است. مصرف شامل این بخش از کاراکترول، ثیموول (Carvacrol)، باستیک تشکیل می‌دهد (2005). عوامل اصلی نهایی بیماری‌ها (Amin et al., 2005) است. گیاهان دارویی دارای ترکیب‌های تاناهی از قبیل برای کاراکترول، ثیموول (Carvacrol)، باستیک تشکیل می‌دهد (2005). عوامل اصلی نهایی بیماری‌ها (Amin et al., 2005) است. گیاهان دارویی دارای ترکیب‌های تاناهی از قبیل برای کاراکترول، ثیموول (Carvacrol)، باستیک تشکیل می‌دهد (2005). عوامل اصلی نهایی بیماری‌ها (Amin et al., 2005).
عصاره‌های گیاهی برداشت‌های (2004)، در واقع استفاده از اساس‌ها و
عصاره‌های گیاهان دارویی به‌عنوان یکی از روش‌های توانی
کنترل بیماری‌های گیاهی بیشتر در مفهوم آزمایش‌گاهی
مورد مطالعه قرار گرفت (2005, 2006)

Moyuma et al., 2002; Pitaro et al., 2002

آزمایش‌گاهی، در شرایط مزرعه و گل‌گذاری گزارش کرده، که
عصاره‌های فیتوفارماکولوژیک به وجود ریشه‌های فنولی
موجود در عصاره این گیاهان نسبت داده‌اند در گزارش‌های
دیگر عصاره‌های گیاهی

Aegle marmelos

بررسی اثر عصاره چند گیاه دارویی ...
آزمایش دوم: بررسی اثرهای ضد قارچی عصارهای گیاهان دارویی در شرایط بروز شیمی (گلخانه)

این آزمایش به‌صورت کاملاً صادقی و به‌کار بررسی شد و خود گلخانه‌ها در بخش‌های مختلف به‌صورت مداوم بررسی می‌گردید. در این آزمایش، پلاک‌آزمایش‌های مورد بررسی شامل درصد اثرات ضد قارچی گیاهان دارویی و قارچی رشدی در گلخانه‌ها در برابر عصاره‌های آزمایش‌شده بودند.

با توجه به نتایج بدست‌آمده در این آزمایش، نتایج بدست‌آمده در این آزمایش نشان می‌دهند که عصاره‌های آزمایش‌شده در برابر قارچ‌های آزمایش‌شده نیروی مطلوبی داشتند و درصد اثرات ضد قارچی رشدی بیش از ۷۰ درصد بود.

در نهایت، نتایج این آزمایش نشان می‌دهند که عصاره‌های در برابر قارچ‌های آزمایش‌شده نیروی مطلوبی داشتند و درصد اثرات ضد قارچی رشدی بیش از ۷۰ درصد بود.
آزمایش سوم: بررسی اثر حفاظتی عصاره گیاهان دارویی در شرایط گلخانه این آزمایش مطبق آزمایش دوم انجام شد. با این تفاوت که ابتدا گلخانه‌ها با عصاره گیاهان دارویی تیمار شدند و دو روز بعد توسط سوسپانسیون اسپورهای فاصله تلخیج، سپس دو هفته بعد شدت تیمار بر راساس روش Latha و همکاران (2009) انداده‌گری شد.

تجزیه و تحلیل آماری تجزیه آماری توسط نرم‌افزار SAS انجام گردید و برای مقایسه میانگین‌ها از آزمون تنکی در سطح احتمال 5% استفاده شد.

نتایج
نتایج آزمایش اول اثر تیمارهای آزمایش بر قطر کلوینی فاصله Alternaria solani در شرایط درون شیشه
نتایج تجزیه واریانس نشان داد که اثر عصاره گیاهان Alternaria solani در شرایط درون شیشه Alternaria solani مقدار معنی‌داری در سطح احتمال 1% نداشت. در حالی که نمودار نشان می‌دهد که در شرایط درون شیشه Alternaria solani تیمارهایی که با عصاره گیاهان دارویی تیمار شدند در مقایسه با تیمارهایی که بدون عصاره و فاصله کش- شاهد منفی) دارای بیشترین قطر کلوینی (75 میلی‌متر) بودند (شکل‌های 1 و 2).

شکل 1- مقایسه میانگین اثر تیمارها بر رشد پرگنه فاصله Alternaria solani در شرایط درون شیشه

جدول 1- تجزیه واریانس اثر تیمارها بر قطر کلوینی فاصله Alternaria solani در شرایط درون شیشه

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه آزادی</th>
<th>تیمار</th>
<th>خطای</th>
<th>ضریب تغییرات</th>
<th>مشخصات</th>
<th>درصد احتمال 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/7/900</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/8/14</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: مقایسه در سطح احتمال 1%
نتایج آزمایش دوم
اثر تیمارهای آزمایشی بر شدت آلودگی بوته‌های گچ‌فرنگی بار Alternaria solani
در شرایط گلخانه تجزیه واریانس نشان داد که اثر تیمارهای آزمایش بر شدت آلودگی گیاهان در سطح 1% آزمون تک‌تکی معنادار بود (جدول 2).

جدول 2- تجزیه واریانس اثر تیمارها بر شدت آلودگی گیاه گچ‌فرنگی بار Alternaria solani در شرایط گلخانه

| منابع تغییرات | درجه آزادی | میانگین مربوط
|--------------|----------|----------------|
| تیمار | 100/8989/88/0 | 13
| خط | 1/3/2 | 28
| ضریب تغییرات | 1 | 3/2

(منی داری در سطح احتمال 5%)

نتایج آزمایش سوم
اثر حفاظتی تیمارهای آزمایشی بر شدت آلودگی گیاه Alternaria solani به قارچ گچ‌فرنگی بار در شرایط گلخانه نشان می‌دهد میانگین نشان داد که اثر حفاظتی عصاره‌های مورد مطالعه در این آزمایش در سطح احتمال 1% آزمون تک‌تکی معنادار بود (جدول 3).

نتایج نشان داد که بسیاری از تقویت‌های گیاهان با عامل بیماری، شدت آلودگی بوته‌های گچ‌فرنگی به مور زمین افزایش یافته. به طوری که به‌طوری که از دو هفته از زمان تلیف بیشترین (32%) و کمترین (77%) شدت آلودگی به‌ترتیب در شاهد منفی و شاهد سبیل (قارچ کش داکونیل)
شکل 3 - مقایسه میانگین اثر تیمارها بر شدت آلودگی بوته‌های گوجه‌فرنگی به قارچ Alternaria solani در گلخانه

جدول 3 - تجزیه واریانس اثر حفاظتی تیمارها بر شدت آلودگی گیاه گوجه‌فرنگی به قارچ Alternaria solani در شرایط گلخانه‌ای

<table>
<thead>
<tr>
<th>میانگین مریعات</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1489/333</td>
<td>13</td>
<td>تیمار</td>
</tr>
<tr>
<td>8/27</td>
<td>28</td>
<td>خطأ</td>
</tr>
<tr>
<td>2/83</td>
<td>-</td>
<td>ضریب تغییرات</td>
</tr>
</tbody>
</table>

منبع: داری در سطح احتمال 0.05
مقایسه میانگین نتایج نشان داد که اعمال تیمارها و بعد از آنجا که گیاهان با عامل عمرانی گیاهانه سازی گیاهان شدند به طوری که شاگرد منفی (28/2%) و فاصله داکوتیل 600/60% به ترتیب داراری بهترین و کمترین شدت آلودگی به فاصله Alternaria solani آلودگی به فاصله نشان داد که همه تیمارها به صورت معنی‌داری دارای شدت آلودگی کمتری نسبت به شاگرد منفی بودند. در بین تیمارها کمترین میزان آلودگی پس از فاصله کش داکوتیل مربوط به غلظت 600 ppm عصاره آویشن زرافایی با 5/5% آلودگی

شکل 5- مقایسه میانگین اثر حفاظتی تیمارهای آزمایش بر شدت آلودگی گیاه گوجه‌فرنگی به فاصله Alternaria solani در شرایط گلخانه

شکل 6- اثر حفاظتی غلظت 600 ppm عصاره‌ها بر شدت آلودگی گوجه‌فرنگی (A: شاگرد B: لعل کوهستان C: آویشن زرافایی D: آویشن کیک آلودگی مرزه خوزستانی و F: فاصله کش داکوتیل)
ニューサイドゥ、アルテナリアソランアイイエス、\textit{Alternaria solani}.
غلظت عصاره‌ها، شدت آلودگی بیوت ها به طور چشمگیری کاهش یافته. بنابراین استفاده عصاره آویشن رزفاوی و آویشن کری آلوت بلافاصله نسبت به میزان عامل بیماری که موجب گوجه‌فرنگی توصیه می‌گردد.

منابع مورد استفاده


- Muyima, N.Y.O., Nziweni, S. and Mabinya, L.V., 2004. Antimicrobial and antioxidant activities of Tagetes minuta, Lippia javanica and Foeniculum...


- Vijayan, M., 1989. Studies on early blight of tomato caused by Alternaria solani (Ellis and Martin) Jones.
Effects of hydro-alcoholic extract of some medicinal plants on control of *Alternaria solani* fungus causing tomato early blight disease

S. Esmaili¹, M. Rafiei¹, M. Saidi²*, S. Beigi³, Z. Tahmasebi⁴, M. Mohamadi⁵ and M. Kohzadi⁶

1- M.Sc. graduated, Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, Iran
2*- Corresponding author, Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, Iran
E-mail: msaidi@ilam.ac.ir
3- Department of Plant Protection, Jahaad-e- Keshavarzi, Ilam, Iran
4- Department of Agronomy and Plant Breeding, College of Agriculture, Ilam University, Ilam, Iran
5- Ph.D. student, Department of Horticultural Sciences, College of Agriculture, Zanjan University, Zanjan, Iran
6- Department of Natural Resources and Watershed, Ilam, Iran

Received: November 2018   Revised: May 2019           Accepted: May 2019

Abstract

Tomato early blight disease, caused by *Alternaria solani* fungus, is one of the most important diseases of tomato in the world, and also in Iran. In order to investigate the antifungal activity of some medicinal plants to control this fungus, separate experiments were conducted in a completely randomized design under *in vitro* and greenhouse conditions. In the first experiment, the effect of concentrations of 200, 400 and 600 ppm of hydro-alcoholic extract (70% methanol and 30% water) of *Thymbra spicata* L., *Thymus eriocalyx* (Ronniger) Jalas, *Satureja khuzistanica* Jamzad and *Oliveria decumbents* Vent. with the negative (distilled water) and positive (Daconil, 3 g l⁻¹) controls on the growth of *A. solani* fungus was studied under *in vitro* conditions. The results of the first experiment indicated complete inhibiting of fungal colony growth in all treatments. In the second experiment, 72 hours after contamination of tomato plants with *A. solani* fungus in an isolated greenhouse, contaminated plants were sprayed with the above-mentioned treatments and monitored for the disease symptoms 14 days later. In the third experiment, the protective effect of the above-mentioned treatments was studied. The results of the second and third experiments showed that with an increase in the extract concentration, the inhibitory and protective effects of the treatments increased. Although all treatments reduced the disease severity compared to the control, the concentrations of 600 ppm of *T. spicata*, 600 ppm of *T. eriocalyx* and 400 ppm of *T. spicata*, respectively had the most effective inhibitory and protective effects on the growth of fungus studied. Therefore, the use of the above treatments is recommended as a practical method for biological control of *A. solani*.

**Keywords:** Antifungal activity, *Thymbra spicata* L., *Thymus eriocalyx* (Ronniger) Jalas, *Satureja khuzistanica* Jamzad, *Oliveria decumbents* Vent.