(Matricaria chamomilla L.)

تأثیر محلول‌پاشی کینوزان بر ویژگی‌های کمی و کیفی باوبن آلمانی (L.)

تحت نشک کم‌آی

محمدرضا دهاقی، مصطفی نعمتی، عباسعلی غلامی‌علی‌پور، دکتر حمید جباری

1- دانشجوی کارشناسی ارشد، رشته آکوپاتولوژی، دانشگاه گیم‌کاوس، کینگ کاوس، کینگ کاوس، ولز، ایران
2- نویسنده، مسئول استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گیم‌کاوس، کینگ کاوس، کینگ کاوس،ولز، ایران

پست الکترونیک: Naemi_701@yahoo.com

استادیار. گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گیم‌کاوس، کینگ کاوس، ولز، ایران

۱- استادیار، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقاتی، آموزش و تربیت کشاورزی، کرگند، ایران

تاریخ اجرا تحقیق: آذر ۱۳۹۷ تاریخ دریافت ارسال نهایی: آبان ۱۳۹۷

چکیده

(طاعون پررسی تأثیر محلول‌پاشی کینوزان بر ویژگی‌های کمی و کیفی گیاه دارویی باوبن آلمانی (L. chamomilla) در شرایط نشک کم‌آی، آزمایشی به‌صورت فاکتوریل در قالب طرح پردرجه کامل تعادلی با سه تکرار در سال زراعی ۱۳۹۲-۱۳۹۱، در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه گیم‌کاوس انجام شد. محلول‌های مورد معادله شامل آبیاری با ۱۵۰ میلی‌گرم در لیتر ۶۰ روز پس از کاشت (K۱)، محلول‌پاشی به مقدار ۱۲۵ میلی‌گرم در لیتر ۷۰ روز پس از کاشت (K۲)، محلول‌پاشی به مقدار ۱۵۰ میلی‌گرم در لیتر ۷۵ روز پس از کاشت (K۳)، محلول‌پاشی به مقدار ۲۰۰ میلی‌گرم در لیتر ۸۰ روز پس از کاشت (K۴) و محلول‌پاشی به مقدار ۲۵۰ میلی‌گرم در لیتر ۹۰ روز پس از کاشت (K۵) بودند. تأثیر نشک کم‌آی موجب کاهش صفات افزایشی ویژه ویژگی‌های مفید گیاهی شد. نتایج نشان داد که نشک کم‌آی موجب کاهش صفات افزایشی ویژه ویژگی‌های مفید گیاهی شد. نتایج نشان داد که نشک کم‌آی موجب کاهش صفات افزایشی ویژه ویژگی‌های مفید گیاهی شد. نتایج نشان داد که نشک کم‌آی موجب کاهش صفات افزایشی ویژه ویژگی‌های مفید گیاهی شد. نتایج نشان داد که نشک کم‌آی موجب کاهش صفات افزایشی ویژه ویژگی‌های مفید گیاهی شد.

مقدمه

باوبن آلمانی (Matricaria chamomilla L.) گیاهی، یکی از سلسله تحت بهترین قسمت و یکی از گیاه دارویی مهم دنیا می‌باشد. باوبن در تمام فارماکوهای معطر باعث گیاه دارویی مصرف شده و خواص درمانی گیاهی آن مورد بررسی قرار گرفته است.

(Salamon, 1992) در مطالعات بالینی و تجربی ارتهای درمانی باوبن در بیماری‌های دستگاه کارشک و عصبی و خواص ضد ابتلا، ضد ویروس، ضد میکروب، آنتی‌اکسیدان و ضد سرطان برای این گیاه اثبات شده است. همچنین مشخص شده است که این گیاه در التهاب و بهبود زخم‌ها مؤثر است (Rabiei & Rafieian, 2018).
عوامل محیطی محل روش گیاهان دارویی بر مقدار کل
ماده موثر و عنصر تشکیل دهنده آن و تولید وزن خشک گیاه
تأثیر می گذارد. تنش خشکی ازجمله نشانه های محیطی است
که علائم کاهش رشد رویشی و تغییر در ساختارهای
اناتومیکی گیاه، از طریق ایجاد تنش ناپایدار مانند
است. تنش خشکی سبب تغییر در مسرهای ترکیبی و
متاپلیونهای ناپایدار می شود (2012). Sharma et al.,

از

اصولات اکسیداسیون مهمی که در شرایط خشکی ایجاد می گردد,
تغییر مولکول کازوفیل است. کاهش میزان رنگزه های
فوتوسنتزی به طور مستقیم می تواند باعث کاهش قابلیت فتوسنتز
شود و تولید اولیه را محدود سازد (2015). Dashti et al.,

در

طی بروز تنش خشکی گیاهان با دو چرای موارد تظیم کننده
اسمزی همانند اسیدهای آمینه، نیتریت، بروتیون مهدی
هورمون ها و پروتئین ها سعی در مقابله با تنش دارد. در میان
ترکیب‌های آل، پروسیس باکتریال از مهمترین تظیم‌کنندهای
اسمزی به شمار می رود (2004). Prasad et al.,

مختلف گیاهان دارویی تحت آب آوری کامل و شرایط
واکنش های منفی از نظر نشان می دهد. تولید متاپلیونهای
تانویه در گیاهان به‌وسیله عوامل محیطی تغییر می پیدا و تنش
خشکی عامل مؤثری در رشد و همچنین تولید ترکیب‌های
برای پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه فلزگرید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,

پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه یافته گردید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,

پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه یافته گردید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,

پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه یافته گردید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,

پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه یافته گردید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,

پژوهشی گزارش کردن که محلول‌های کبزون منجر به پاست
شد روشن و کاهش تغییر در گیاه یافته گردید و موجب
کاهش 43-46 درصد صرف آب شد. در حالی که عملکرد
نگر محسوس نامناسب بود.

طی (2001) Malekpour et al.,
کشور تحقیق و پژوهش در زمینه تولید گیاهان دارویی در شرایط کمبود رطوبت و روی‌های مدیریتی آن ضروری به‌نظر می‌رسد. هدف از اجرای این آزمایش بررسی اثرهای محلول‌پذیری گیاهان کبود و عملکردهای اساسی در گیاه اویشی دانایی گرید. طی پژوهش دیگری مشخص شد که محلول‌پذیری گیاهان کبود در شرایط تنش کم آبی بر وزن‌گاه‌ها کمی و کمی گیاه‌های دارویی بابونه آماده بود.

مواد و روش‌ها
آزمایش در مزرعه تحقیقاتی دانشکده کشاورزی و منابع طبیعی دانشگاه گیلان کاوانس با مختصات طول جغرافیایی ۵۵ درجه و ۱۲ دقیقه طول شرقی و ۳۷ درجه و ۱۶ دقیقه عرض شمالی و ۴۵/۵ متر ارتفاع از سطح دریا در سال زراعی ۱۳۹۲–۱۳۹۳ اجرا شد. براساس اطلاعات ایستگاه‌های این کشور، این مولکول در میان منابع طبیعی کوئین دارای الیت میدانی‌ای گرم و نمی‌شکست و مناسب بود. سطح گزارش دهی محلول‌پذیری بررسی وزن‌گاه‌های فیزیکی و شیمیایی خاک محل آزمایش ۱۳۰/۰ سانتی‌متر ارتفاع بود. نتایج آن در جدول ۱ گزارش شدند.

به‌طور کل پنج حالت به‌طور تصادفی در ۴۰ گیاه آزمایشی در هر حالت مورد بررسی قرار گرفت. میزان تنش بر سطح اندازه‌گیری و حلقه‌های پهن‌بغل در یک روز خنثی برگ و سافه گل‌گذاری را افزایش داد (Mahdavi et al., 2012).

مطالعات انجام شده در زمینه تولید گیاهان دارویی بانگان آن است که استفاده از مولکول‌های نیازمند شرایط برای تولید این گیاهان فراهم آورده. همچنین با توجه به شرایطی که آن در پیش‌بینی مناطق گزارشی پایداری می‌کنند نشان داده می‌شود که مولکول‌پذیری گیاهان کبود در شرایط تنش کمی و کمی‌تر در برابر تنش آبی بیشتر بوده و کاهش در وزن‌گاه‌ها و آب‌گزینی سانتی‌متر و حلقه‌های پهن‌بغل شده‌اند. نتایج آن در جدول ۱ گزارش شدند.

| البان حاکم | رس سیلیس | فسفر | نیتروژن | اسیدهایت | باند خاک | ریس | سیلیس | فسفر | نیتروژن | اسیدهایت | باند خاک | ریس |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ۱/۱۹ | ۱/۰۷ | ۱/۰۸ | ۱/۰۷ | ۱/۰۶ |

جدول ۱ - خصوصیات فیزیکی و شیمیایی خاک محل اجرا آزمایش (میزان ۳۰-۰ سانتی‌متر)

که محلول‌پذیری گیاهان منجر به افزایش عملکرد ماده خشک و عملکردهای اساسی در گیاه اویشی دانایی گرید. طی پژوهش دیگری مشخص شد که محلول‌پذیری گیاهان کبود در شرایط تنش کم آبی بر وزن‌گاه‌ها کمی و کمی گیاه‌های دارویی بابونه آماده بود.

به‌طور کل پنج حالت به‌طور تصادفی در ۴۰ گیاه آزمایشی در هر حالت مورد بررسی قرار گرفت. میزان تنش بر سطح اندازه‌گیری و حلقه‌های پهن‌بغل در یک روز خنثی برگ و سافه گل‌گذاری را افزایش داد (Mahdavi et al., 2012).

مطالعات انجام شده در زمینه تولید گیاهان دارویی بانگان آن است که استفاده از مولکول‌های نیازمند شرایط برای تولید این گیاهان فراهم آورده. همچنین با توجه به شرایطی که آن در پیش‌بینی مناطق گزارشی پایداری می‌کنند نشان داده می‌شود که مولکول‌پذیری گیاهان کبود در شرایط تنش کمی و کمی‌تر در برابر تنش آبی بیشتر بوده و کاهش در وزن‌گاه‌ها و آب‌گزینی سانتی‌متر و حلقه‌های پهن‌بغل شده‌اند. نتایج آن در جدول ۱ گزارش شدند.

| البان حاکم | رس سیلیس | فسفر | نیتروژن | اسیدهایت | باند خاک | ریس | سیلیس | فسفر | نیتروژن | اسیدهایت | باند خاک | ریس |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ۱/۱۹ | ۱/۰۷ | ۱/۰۸ | ۱/۰۷ | ۱/۰۶ |

جدول ۱ - خصوصیات فیزیکی و شیمیایی خاک محل اجرا آزمایش (میزان ۳۰-۰ سانتی‌متر)

که محلول‌پذیری گیاهان منجر به افزایش عملکرد ماده خشک و عملکردهای اساسی در گیاه اویشی دانایی گرید. طی پژوهش دیگری مشخص شد که محلول‌پذیری گیاهان کبود در شرایط تنش کم آبی بر وزن‌گاه‌ها کمی و کمی گیاه‌های دارویی بابونه آماده بود.

به‌طور کل پنج حالت به‌طور تصادفی در ۴۰ گیاه آزمایشی در هر حالت مورد بررسی قرار گرفت. میزان تنش بر سطح اندازه‌گیری و حلقه‌های پهن‌بغل در یک روز خنثی برگ و سافه گل‌گذاری را افزایش داد (Mahdavi et al., 2012).

مطالعات انجام شده در زمینه تولید گیاهان دارویی بانگان آن است که استفاده از مولکول‌های نیازمند شرایط برای تولید این گیاهان فراهم آل (Eustoma grandiflorum) سپر افزایش رشد و توزع غنچه‌ها و دندان و بدیل افزایش نر و أتوسپانیتار بی‌گریخی و افزایش کیفیت گل گرید (Uddin et al., 2004). نتایج یک تحقیق نشان داد که محلول‌پذیری گیاهان افزایش بوده، برد وزن حساسیت برگ و سافه گل‌گذاری را افزایش داد (Emami Bistgani et al., 2017).
تایباد محلول‌های سیکوتوناز بر ...

قرانت شد و براساس رابطه زیر Biochrom libera- S22 مقدار کامازولون برآورد گردید (IHP).

\[ C = \left(\frac{50 \times 10 \times E \times 184.3}{(\varepsilon \times 1000)}\right) \times 100 \]

وزن گل خشک اساس‌گیره شده به گرم، عدد 10 حجم نهایی نمونه، عدد 184.3 و مولکول کامازولون، عدد جذب قرانت شده و عدد بیشتر مولکر کامازولون که برای 200 می‌باشد.

پس از اطمینان از یکتوانستگی داده‌ها، تجزیه و ارتباط SAS (Ver.9) انجام شد. برای مقایسه میانگین‌ها از آزمون LSD در سطح احتمال 5% ابزار شد. در ضمن با ارائه کاهش آماری در انتساب ویژه میانگین سطوح مختلف کیتونزر و رتبه‌بندی آنها در سطح ابزاری باعث مجزا انجام شد.

نتایج

ارتباط گیاه

نتایج تجزیه واریانس نشان داد که تیمار آبیاری در سطح احتمال 1% تأثیر معنی‌داری بر ارتباط بونه داشت (جدول 1). نتایج مقایسه میانگین‌ها نشان داد که بین دو تیمار آبیاری واقعی (میانگین سطوح مختلف کیتونزر و رتبه‌بندی آنها در سطح ابزاری) باعث مجزا انجام شد.

تعداد شاخه فرعی

در این مطالعه تعداد شاخه فرعی در گیاه تحت تأثیر قرار کشف گردید. در کیتونزر تأثیر معنی‌داری بر صفت مکرر داشت (جدول 2). مقایسه میانگین‌ها نشان داد که کاهش در تعداد شاخه دوم محلول‌بندی کیتونزر (K) منجر به افزایش 10 درصدی تعداد شاخه فرعی نسبت به تیمار کنترل (زبان).
معبئی دارد در سطح آماری 5% بر وزن خشک گل در بوته داشت (جدول 2). مقایسه میانگین‌های سطوح کیتونز مصرفی مشخص گرد که در این تحقیق محلول‌پاشی کیتونز در مقدار و زمان‌های مختلف موجب افزایش 33-42 درصدی وزن گل خشک نسبت به تیمار شاهد گردید و بیشترین میزان صفت یادشده به تیمارهای سطوح چهارم و دوم کیتونز تعلق داشت (جدول 4).

عملکرد گل خشک در بین پژوهش اثرهای اصلی کیتونز و آبیاری تأثیر معبئی دارد بر عملکرد گل خشک گیاه گیاه از بوته آلمانی داشت (جدول 2). مقایسه نشان داد که بیشترین میزان عملکرد گل خشک گیاه گیاه آلمانی (4/687 کیلوگرم) به تیمار آبیاری تعلق داشت و تنها خشکه باعث کاهش عملکرد گل خشک گروای (جدول 3).

وزن خشک بوته در این پژوهش، آبیاری در سطح احتمال 1% تأثیر معبئی دارد بر وزن خشک بوته در گیاه گیاه آلمانی داشت (جدول 2). مقایسه میانگین‌ها نشان داد که بیشترین وزن خشک بوته مربوط به تیمار آبیاری شاهد (6/587 گرم) بود و تنها خشکه باعث کاهش وزن خشک گیاه به میزان 42/3% نسبت به تیمار شاهد گردد (جدول 3).

وزن خشک گل در بوته تجزیه واریانس داده‌ها مشخص کرد که کیتونز تأثیر
جدول ۲ - تجزیه واریانس اثر تنش کم آبی و کیتونزان بر وزن گیاه کلی، وزن گیاه پوته و ارتفاع گیاه با پودن آلمناس (Matricaria chamomilla L.)

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه ارتقای</th>
<th>تعداد شاخه</th>
<th>وزن گیاه کلی</th>
<th>وزن گیاه پوته</th>
<th>ارتفاع گیاه</th>
<th>فرعی</th>
<th>آزادی</th>
<th>گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پلوک</td>
<td>۲</td>
<td>۵۸۸</td>
<td>۰/۰۸۷</td>
<td>۰/۲۸۷</td>
<td>۳۸/۳۸۱</td>
<td>۰۵۸</td>
<td>۰۸۷</td>
<td>۳۸/۳۸۱</td>
</tr>
<tr>
<td>آباینر</td>
<td>۱</td>
<td>۱۶۵/۱۷۱</td>
<td>۰/۲۹۳</td>
<td>۰/۲۹۳</td>
<td>۷۹/۲۹۳</td>
<td>۰۲۹</td>
<td>۰۲۹</td>
<td>۷۹/۲۹۳</td>
</tr>
<tr>
<td>کیتونزان</td>
<td>۴</td>
<td>۳۵۵/۳۸۵</td>
<td>۰/۸۵۴</td>
<td>۰/۸۵۴</td>
<td>۸۷/۸۵۴</td>
<td>۰۸۵</td>
<td>۰۸۵</td>
<td>۸۷/۸۵۴</td>
</tr>
<tr>
<td>آباینر × کیتونزان</td>
<td>۴</td>
<td>۳۸۵/۳۹۳</td>
<td>۰/۲۹۴</td>
<td>۰/۲۹۴</td>
<td>۸۷/۲۹۳</td>
<td>۰۲۹</td>
<td>۰۲۹</td>
<td>۸۷/۲۹۳</td>
</tr>
<tr>
<td>خطای</td>
<td>۸</td>
<td>۴۸/۴۷</td>
<td>۰/۱۱۴</td>
<td>۰/۱۱۴</td>
<td>۳۷۶</td>
<td>۰۳۷۶</td>
<td>۰۳۷۶</td>
<td>۳۷۶</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>۳۹/۱۸</td>
<td>۲۱/۲۷/۳۴</td>
<td>۱۸/۳۸</td>
<td>۱۸/۳۸/۳۴</td>
<td>۱۸/۳۸/۳۴</td>
<td>۱۸/۳۸/۳۴</td>
<td>۱۸/۳۸/۳۴</td>
<td>۱۸/۳۸/۳۴</td>
</tr>
</tbody>
</table>

جدول ۳ - مقایسه میانگین‌های اثر آباینر بر صفات ارتقای گیاه. تعداد گل در پوته، وزن گیاه کلی و عملکرد گل خشک گیاه با پودن آلمناس (Matricaria chamomilla L.)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>عملکرد گل خشک (kg.ha⁻¹)</th>
<th>وزن گیاه کلی (g)</th>
<th>تعداد گل در پوته (cm)</th>
<th>ارتقای گیاه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶/۵۸a</td>
<td>۶/۵۸۲/۶۵۸b</td>
<td>۶/۵۸۴/۶۸۴b</td>
<td>۱۰۱/۱۳۳/۱۳۳</td>
<td>۴۳/۵۷/۵۷/۵۷</td>
</tr>
</tbody>
</table>

آباینر معامل (شاهد) تنش کم آبی

در هر سون میانگین‌هایی که حداکثر دارای یک حرکت مشترک هستند، براساس آزمون LSD در سطح احتمال ۵٪ دارای تفاوت معنی‌داری نیستند.
جدول 4- مقایسه میانگین‌های صفات تعداد شاخه فرعی، وزن خشک و عملکرد گل خشک گیاه بابونه آلپانی (Matricaria chamomilla L.) تحت سطح مختلف محلول‌پاشی کیتونزان

<table>
<thead>
<tr>
<th>محلول‌پاشی کیتونزان</th>
<th>عملکرد گل خشک (kg/ha)</th>
<th>وزن خشک گل (g)</th>
<th>تعداد شاخه فرعی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/99c</td>
<td>1/95b</td>
<td>21/43ab</td>
</tr>
<tr>
<td></td>
<td>6/46/5ab</td>
<td>2/78a</td>
<td>24/6b</td>
</tr>
<tr>
<td></td>
<td>6/40/5abc</td>
<td>2/67Vab</td>
<td>18/70ab</td>
</tr>
<tr>
<td></td>
<td>7/38/5a</td>
<td>2/19a</td>
<td>16/76ab</td>
</tr>
<tr>
<td></td>
<td>5/61/2bc</td>
<td>2/65Vab</td>
<td>16/83bc</td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌های که حاصل دارای یک خرفا مشترک هستند، براساس آزمون LSD در سطح احتمال 5% دارای تفاوت معنی‌داری نیستند.

جدول 5- مقایسه میانگین‌های صفات درصد و عملکرد اساس گیاه بابونه آلپانی (Matricaria chamomilla L.) تحت تأثیر برمکش آبیاری و کیتونزان

<table>
<thead>
<tr>
<th>کیتونزان</th>
<th>میزان کامامولزون (%)</th>
<th>عملکرد اساس (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میزان کامامولزون (%)</td>
<td>نتیجه کمآبی</td>
</tr>
<tr>
<td></td>
<td>نتیجه کمآبی</td>
<td>نتیجه کمآبی</td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌های که حاصل دارای یک خرفا مشترک هستند، براساس آزمون LSD در سطح احتمال 5% دارای تفاوت معنی‌داری نیستند.

درصد و عملکرد اساس

در این تحقیق درصد و عملکرد اساس بابونه به صورت معنی‌داری در میان آماری 1% تحت تأثیر کیتونزان و همچنین برمکش آبیاری و کیتونزان قرار گرفتند (جدول 2). در شرایط آبیاری معنی‌داری کیتونزان به میزان 125 میلی‌گرم در لیتر روز پس از کاشت منجر به افزایش معنی‌داری در درصد اساس بابونه نسبت به شرایط عدم مصرف کیتونزان در گیاه بابونه آفتابی و حاصل زنبیل برتر در جدول مقایسه میانگین‌های اثرهای متقابل گردید (جدول 5).
فرآوری محلول‌پاشی کیتوزان بر... 128

استفاده از 125 میلی‌گرم کیتوزان در لیتر در زمان 60 روز پس از کاشت منجر به افزایش 57 و 47 درصدی علملرد اساسی برتیت در شرایط آب‌ناری معمول و تنش کم‌آب گردید. کم‌آب‌ترین علملرد اساسی نیز (کیلوگرم در هکتار) به تیمار عدم محلول‌پاشی کیتوزان در شرایط کروم‌رطوبی تعلق داشت. نتیجه این پژوهش نشان داد که محلول‌پاشی کیتوزان به میزان 125 میلی‌گرم در لیتر 60 روز پس از کاشت تحت هر دو شرایط رطوبیتی مورد مطالعه موجب افزایش قابل ملاحظه علملرد اساسی شده است.

درصد کاماوژون

در این پژوهش عامل آبیاری، کیتوزان و برهمکنش آبیاری در کیتوزان تأثیر معنی‌داری در سطح آماری 1% بر درصد کاماوژون داشتند (جدول 1). مقایسه میانگین ارتفاع متقابل سطوح آبیاری در کیتوزان بنابرآن که بیشترین درصد کاماوژون (91/9%) مربوط به سطح دوم کیتوزان (محلول‌پاشی به مقدار 125 میلی‌گرم در لیتر 60 روز پس از کاشت) در شرایط نشانیده بود که با تیمار سطح سوم کیتوزان در شرایط آب‌ناری معمول و تنش در اطراف آبیاری علملرد فرار گرفتند (جدول 1) که این امر احتمالاً نشان دهنده این است که کاربرد سطوح کیتوزان یادشده در افزایش ماه موتوره گیاه باعث آنلاین تأثیر قابل ملاحظه‌تری نسبت به سایر سطوح مورد ارزیابی داشته است.

بحث

براساس نتایج این تحقیق، نشان خشکی باعث کاهش درصد ارتفاع گیاه گردید که نتیجه این تحقیق با گزارش‌های موجود در مطالعات مشابه مطابقت داشت. براساس اظهارات پژوهشگران کاهش وزن خشک بیوتن در شرایط کم‌آب ای کیک از عوارض تنش کمبرد رطوبیت ویابش (Bettaieb et al., 2009) در نظر گرفته شده.

مراجع

Afzali et al., 2007. Sultana, و همکاران (2017) بیان کردن که محلول‌پاشی کیتوزان منجر به افزایش ارتفاع، تعداد گل و علملرد گوچ‌فرنگی‌نش بود.

بیشتر اظهارات پژوهشگران کاهش وزن خشک بیوتن در شرایط کم‌آب ای کیک از عوارض تنش کمبرد رطوبیت ویابش (Bettaieb et al., 2009) در نظر گرفته شده.
مشخص شد که با کاهش میزان آب و ایجاد تنش، ارتفاع بوته، وزن تر بوته و وزن خسک بوته در گیاهان ریحان کاهش یافت (Aslani et al., 2011). گزارش‌های مشابه در زمینه تأثیر سوء تنش خشکی بر رشد گیاه پاک و کاهش ارتفاع و عملکرد گل پاکینه اثرات شد. (Baghalian et al., 2008) همچنین مطالعه گیاه جعفری در شرایط تنش خشکی تنان داد که خشکی سبب افزایش میزان گیاه بفر در حالی که عملکرد ماده خشک گیاه را کاهش داد (Petropoulos et al., 2008). گرو هی ترکیب‌های مختلف گیاه دارویی بوته و مورد مطالعه قرار گرفتند و مشخص شد که ارتفاع بوته و وزن گیاه در شرایط تنش متأثر از کاهش سطح برق گیاه بود. در شرایطتنش، گیاه سطح برق خود را کاهش داده و همین امر به کاهش تولید مواد فتوسنتزی و در نهایت به کاهش وزن خشک گیاه منجر می‌گردد. (Bettaieb et al., 2009). در شرایطکم ای، کاهش ماده خشک بوته به دلیل فشار آسم سولن ناشی از کاهش سطح برق گیاه بود. در شرایطتنش، گیاه سطح برق خود را کاهش داده و همین امر به کاهش تولید مواد فتوسنتزی و در نهایت به کاهش وزن خشک گیاه منجر می‌گردد. بنابراین به‌نظر می‌رسد که تنش خشکی با ایجاد اختلال در رشد ریشه و زاین گیاه، در نهایت منجر به کاهش عملکرد گیاهان می‌شود. در این آزمایشات نیز اعمال تنش خشکی منجر به کاهش 21 درصدی عملکرد گیاه خشک نسبت به تیمار شاهد آب‌پذیری گر دریچه این نتیجه گرفت که تنگی با گزارش‌های مطالعاتی مبنی بر میزان نشان داده شده است. (Afzali et al., 2007). عملکرد گل در گیاه بوته در مجموع حاصل برهم‌کنش اجزای این است که هر یک از آنها در مراحل مختلف رشد ریشه و زاینی شکل می‌گیرند. در این بین ماده خشک گیاه (عملکرد بیولوژیکی) ارتفاع بوته، تعداد ساقه و تعداد گل در هر بوته به‌عنوان مهم‌ترین اجزای عملکرد گل محاسبه می‌شود. در این بررسی مشخص شد که محلول بیانی کیتوزان به میزان ۱۲۵ میلی‌گرم در لیتر روز پس از کاشت (زمین ساق‌دهی گیاه) موجب افزایش ۱۰ درصدی تعداد
نتایج این تحقیق حاکی از آن دارد که تنش خشکی منجر به کاهش صفتی همانند ارتفاع گیاه، تعداد گل و وزن گیاه گیاهی محصول گردری که همین امر در نهایت بر عملکرد گل تأثیر می‌گذارد بوده و آن را کاهش داد. نکته کاربردی در این مطالعه کاهش میزان آسیب گیاهان با کاربرد گیاهان بوده و همچنین عملکرد گل در صرفنفیبی نمونه تأثیر عمیق عملکرد گل، درصد و عملکرد اساس گردد.در این آزمایش مولفه‌های کیتوزان به مقدار ۱۲۵ میلی‌گرم در لیتر ۶۰ روز پس از کاشت در شرایط و تنش گم‌آبی منجر به حصول بیشترین درصد و عملکرد گیاهان بالاترین میزان ماده موتره کامالون در اساس گیاه بابونه آلسان گردد. با توجه به گزارش‌های موجود می‌توان با انجام مطالعات تکمیلی کاربرد این ماده آلی را برای کاهش تنش خشکی در شرایط آب و هوا یعنی متابولیت‌های با بیانات اکثر همین که تنش خشکی را در اثر اثرات متغیر کیتوزان با عوامل یک محکم زیستی کارآمد برای بهبود بیوتست ماده موتره و دیگر متابولیت‌های ناتونه در رژیم‌های مختلف رطوبتی در تولید گیاهان دارویی بهره‌برد. به طوری که به نظر می‌رسد این امر گامی با ارزش در جهت مهندسی متابولیت و تولید داروهای گیاهی می‌باشد. در پایان پیشنهاد می‌شود که این پژوهش در مناطق مختلف کشور و در اقلیم‌های مختلف رژیم‌های مختلف رطوبتی و مقادیر متفاوت کیتوزان تیز انجام شود.

منابع مورد استفاده
- Prasad, S.P., Ram, C. and Uma, S., 2004. Effect of water logging duration on chlorophyll content,
Effects of chitosan foliar application on quantitative and qualitative characteristics of German chamomile (*Matricaria chamomilla* L.) under water deficit stress conditions

M.S. Dehghani¹, M. Naeemi²*, E. Gholamalipour Alamdari³ and H. Jabbari⁴

1- M.Sc. student, Department of Crop Productions, Faculty of Agricultural and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
2*- Corresponding author, Department of Crop Productions, Faculty of Agricultural and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran, E-mail: Naeemi_701@yahoo.com
3- Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
4- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Received: May 2018          Revised: November 2018              Accepted: November 2018

Abstract

In order to evaluate the effects of chitosan foliar application under water deficit stress conditions on quantitative and qualitative characteristics of German chamomile (*Matricaria chamomilla* L.), a study was conducted based on randomized complete blocks design with factorial arrangement of treatments and three replications at Gonbad Kavous University research field, Iran in 2014 growing season. Treatments included irrigation at two levels, irrigation after 60 mm evaporation from class A pan and 100 mm evaporation from class A pan, and chitosan spraying at five levels including non-application of chitosan (spraying with distilled water as control (K₁)), chitosan spraying at 125 mg/l after 60 days of planting (K₂), 125 mg/l after 75 days of planting (K₃), 250 mg/l after 60 days of planting (K₄) and 250 mg/l after 75 days of planting (K₅). Results showed that water deficit stress decreased the plant height, number of flowers, plant dry weight and flower dry yield. Foliar application of chitosan increased the number of branches per plant and flower dry yield. Results indicated that utilization of second level of chitosan under stress and third level of chitosan under normal irrigation improved the chamazolen essential oil percentage and yield. According to results of this study, application of chitosan spraying at 125 mg/l after 60 days of planting under deficit water stress conditions caused the highest percentage and yield of essential oil and chamazulene percentage. In general, in order to prevent and reduce the damage of water stress as well as increased chamazulene, the use of bio-polymer chitosan as a natural material in German chamomile is important.

Keywords: Essential oil, bio-polymer, flower yield, chamazulene, chitosan.