بررسی تأثیر پرتوهای فرابنفش بر کمیت و کیفیت اساس گیاه رازیانه (Foeniculum vulgare Mill) در مراحل مختلف روشی

محمد باقر رضایی، کامیار چاپردان، تریا ابراهیم نوری، عاملی آبادی، مهدیتا ملاح و
احمد محمد

چکیده

با توجه به سوراخ شدن لایه ازن واقعیت پرتوهای فرابنفش و نظر به اثرات زیانبار این پرتوها بر گیاهان، در بررسی حاضر به مطالعه تأثیر پرتوهای فرابنفش حاصل از نسبت ۶۰ وات UV بر کمیت و کیفیت اساس اندازه‌ای مختلف گیاه رازیانه در مراحل مختلف روشی و در شرایط مزوعه‌ای پرداخته شد.

گیاه رازیانه از تیره چتریان و از جمله گیاهان دارویی ارزندانه است که در صنایع داروسازی، خطرسازی، صنایع آرایشی و بهداشتی و صنایع غذایی کاربرد وسیعی دارد. بذر این گیاه دارای مقدار زیادی اساس است که خواص دارویی گیاه را به آن نسبت می‌دهد.

اساس انسان، بذر، گل، بزرگ در زمان قبل از گلدهی وزمان گلدهی و نیز ساقه در سه مرحله قبل از گلدهی، گلدهی و زمان رسیدن بذر گیاهان شاهد و پرتوهای شده به روش تقطیر با آب و بخار آب (روش Kaiser استخراج گردنی و به کمک دستگاه GC/MS مورد تجزیه و یشاناسی قرار گرفت.

مقدار اساس در بذر، ساقه، گل و بذر گیاه در اغلب موارد کاهش یافته و ترکیب‌های تشکیل دهنده آنها دستخوش تغییر شد. میزان ترنس آنتول که مهم‌ترین و عمده‌ترین ترکیب اساس این گیاه می باشد در بذر و گل گیاهان تحت تیمار کاهش

۱-اعضای هیات علمی مؤسسه تحقیقات جنگلی و مرتع
۲- کارشناس ارشد علوم گیاهی
۳- عضو هیات علمی دانشگاه تربیت معلم
پرورش تاثیر پرتوهای فرابنفش بر کمیت و کیفیت اساسی گیاه رازیانه یافته و در سایه با وجود میزان کم اساسی در این اندام، ترکیب مذکور افزایش یافته است و در برگ‌های در مرحله قبل گلدهی کاهش و در زمان گلدهی افزایش داشته است. استراغول، فنیژون و لیمونن که از دیگر ترکیب‌های عمده اساسی گیاه می‌باشند در اکثر موارد تحت تاثیر پرتوهای فرابنفش افزایش یافته. نتایج نشان دادند که گیاه رازیانه نسبت به پرتوهای فرابنفش حساس است.

واژه‌های کلیدی: رازیانه، پرتوهای فرابنفش، آنتون و ترکیب‌های اساسی.

مقدمه
درنتیجه فعالیت‌های بشر مایع بیوسفر تغییر یافته است (Keikert و Krupa 1989). افزایش در غلظت کلروفلوئور کربن‌ها (CFCs)، متان و نتیجتاً اکسیدها در اتمسفر B موجب تخریب لایه ازن (O3) استراتوسفر شده و به افزایش نفوذ پرتوهای فرابنفش خورشیدی (UV-B, 280-320 nm) و رشته‌های آن به سطح زمین منجر گردیده است. پرتوهای UV-B باعث تغییرات زیادی در گیاهان می‌گردد از جمله بر رشد گیاه، ریخت شناسی، ساختار تشريحی آن و بر فراîدهای فیزیولوژیکی و به ویژه فتوسترات اثر می‌گذارد. همچنین باعث تغییراتی در پراکنش زیر توده گیاه، ترکیب‌های شیمیایی آن و فنولوژی گیاه می‌گردد. تحولیک سنتز رنگدانه‌های جاذب uv نیز از اثرات دیگر پرتوهای uv بر گیاهان است (Caldwell reviewed by 1995).

در پاسخ گیاهان به این پرتوها، سازوکارهای مختلفی در گیاه می‌باشند که شامل افزایش گیرندگی نوری (Ballar UV-B 1991 و 1995) تشکیل رادیکالهای آزاد و DNA باشند (Bjom و Cen Pang 1994) و تخریب باشد (Bjom و Panagopoulos Quaite و Hays 1991 و 1992)
تحقیقات گیاهان دارویی و مگر ایران

پرتوهای فرابنفش باعث افزایش تولید اسنس در گیاه نعناع گریده‌داند (مجد، رضاپی و مهربور، 1377). میزان اسنس در گیاه ریحان نیز تحت تأثیر این پرتوهای افزایش یافته است (مجد، رضاپی و میرزاتونی، 1377). در هر دو گیاه نوع و میزان ترکیب‌های تشکیل دهنده اسنس دستخوش تغییر شده است.

رازانه گیاهی است علفی و چند ساله از تیره قندیلیان که ارتفاعی حدود 1 تا 1.5 متر دارد. نام علمی آن Foeniculum vulgare Mill. می‌باشد. این گیاه یکی از قدیمی‌ترین و ارزش‌ده‌ترین گیاهان دارویی است که در تغذیه و صنعت نیز از آن استفاده می‌شود. فراوانی این منش در بیش از 110 کشور جهان باید برجسته نمود. بزرگ‌ترین تولیدکننده این منش چین، شاینی و چینی‌ستان و چاوشی نیز در تولید این منش نیز بسیار می‌باشد.

بیشتر تحقیقات انجام شده به بررسی اثرات سطوح افزایش یافته UV-B بر گیاه تحت شرایط کنترل شده (انافه‌کاری، رشد، گل‌گانه‌ها و ...) پرداخته اند که پاسخ‌های اکوسیستمیک را تحت شرایط واقعی مزرعه‌ای نشان نمی‌دهند. زیرا شدت اثرات پرتوهای V-B در شرایط مزرعه‌ای نسبت به شرایط کنترل شده کمتر است (Caldwell، 1994).

در ارتباط با اثر این پرتوهای بر گیاهان عالی بیشتر گیاهان زراعی و برخی درختان مورد مطالعه قرار گرفته‌اند. گیاهان دارویی از جمله گیاهانی مسئول که بشر از آنها استفاده‌های فراوانی می‌پردازد، ولی کمتر از آنها حفاظت نموده و به بقای آنها توجه کرده
است. با بی‌توجهی به تأثیر تغییراتی که در محیط زیست بوجود آمده بر این دسته از گیاهان، شاید در آینده با از بین رفتن برخی گونه‌ها و یا تحولات نامطلوب در آنها مواجه شویم.

در این پژوهش رازیانه را که یک گیاه دارویی با ارزش و نیز دارای ترکیب‌های اساسی متنوع است در شرایط مزرعه ای تحت تاثیر پرتوهای فرابنفش قرار دادیم و تغییرات ساختار تشريحي و تغییرات اساسی آن را در مراحل رویشی و زايشی مورد بررسی و مقایسه با گیاهان طبيعي قرار دادیم.

مواد روش‌ها

کشت گیاهان: بذردهای رازیانه در Foeniculum vulgare Mill. Sup sp. vulgare در سال 1375 در استانگاه تحقیقاتی البرز واقع در ۵ کیلومتر جنوب شهرستان کرج (۱۳۲۰ متراً به سطح دریا، ۲۵ درجه و ۴۸ دقیقه شمالی و ۵۱ درجه شرقی) در کرتهايي به ابعاد ۶×۲ متر کشت شدند. هر کرت ۶ ردیف به فاصله ۵ سانتی‌متر از یکدیگر داشت در هر ردیف فاصله گیاهان از یکدیگر ۴۰ سانتی‌متر بود. آب‌پری هفتاه داخلی صورت پذیرفت.

پرتوهای گیاهان: ۱۲۰ سانتی‌متر را در وسط کرت‌های آماده شده قرار دادیم. سطح زیر چهار پایه ۲ متر مریع و فاصله ی از رأس گیاه حدود ۳۰ سانتی‌متر بود. هر پایه حامل دو لامپ فرابنفش ۴۰ وات بود که مشخصات آن در جدول شماره ۱ آمده (Phylips TLK 40 W/09 N Holland) است.

جدول شماره ۱ - مشخصات طيفي لامپ (۴۰ وات (UV)

<table>
<thead>
<tr>
<th>λ max = 355 A°</th>
<th>λ max = 315 A°</th>
<th>λ max = 210 A°</th>
</tr>
</thead>
<tbody>
<tr>
<td>E=4*10 CTS/Sec</td>
<td>E=25*10 CTS/Sec</td>
<td>E=4.6*10 CTS/Sec</td>
</tr>
<tr>
<td>UV-A</td>
<td>UV-B</td>
<td>UV-C</td>
</tr>
</tbody>
</table>
در کلیه کرک‌ها بر پرتوهدی به طور همزمان در 78/7/22/24 به مدت 12 ساعت در روز آغاز گردید و بردی‌های در سه مرحله از رشد گیاه انجام شد. مرحله اول زمان قبل از گله‌گیری گیاه به مدت 12 ساعت پرتوهدی (24/78/22/24) (کرت 1) مرحله دوم پرتوهدی تا زمان گله‌گیری گیاه به مدت 27 روز ادامه داشت (24/78/22/19) (کرت 2) و مرحله سوم که پرتوهدی تا زمان رسیدن گیاه کامل بذر به مدت 130 روز (از 78/7/22/24) ادامه یافت (کرت 3).

در پایان هر مرحله برداشت از نمونه های شاهد و تحت تیمار به طور همزمان و به منظور استاندارد صورت گرفت، نتایج در مرحله سوم علاوه بر بذر و ساقه گیاهان کرت 3 و شاهد از بذر و ساقه گیاهان کرت‌های اولی نیز برای استاندارد گیری بر داشت شد.

استخراج و شناسایی استانس: برای استخراج استانس پس از تفکیک بذر، ساقه، گل و بذر گیاه جهت یکسان بودن شرایط پس از خشک شدن آنها در دمای معمولی اتاب و در سایه، استانس هر یک از اندما به طور جداگانه و به مدت 4 ساعت به کمک تقطیر با آب و بخار آب (دستگاه Kaiser استخراج گردید. استانس حاصل به کمک یک میلی لتر دی اتیل انیل جداسازی و به کمک سولفات سدیم آب گیری گردید. درصد استانس حاصل بر اساس وزن خشک گیاه محاسبه شد. برای تشخیص ترکیب شکل GC/MS (کرومانتوگرافی گازی) و (کرومانتوگرافی گازی منفصل به طف سنج جرمی) تریب گردید.

مشخصات دستگاه مورد استفاده: دستگاه گاز کرومانتوگرافی واریان 3400 منشی به دستگاه طف سنج جرمی (saturn II) ستون DB1 (طول 60 متر، قطر 250 میکرومتر، ضخامت لایه فاز ساکن 25/2 میکرومتر است.

دستگاه تله بونی با گاز حامل هیلوی می‌باشد، فشار گاز سر ستون 3 کیلوگرم بر سانتی‌متر مربع و انرژی الکتروسیوی معادل 70 الکترون ولت.
برنامه حرارتی ستون: دما 250-25 درجه سانتیگراد با افزایش دماي ۴ درجه سانتیگراد در دقیقه، درجه حرارت محفظه تزریق و آسیکر ساز به ترتیب ۲۵۰ و ۲۵۵ درجه سانتیگراد تنظیم شد.

شناسایی ترکیب‌های تشکیل دهنده: شناسایی طیف‌ها به کمک شاخص‌های پایدار آنها با تزریق هیدروکربون‌های نرمال (C۷-C۲۵) تحت شرایط یکسان با تزریق اساس‌ها صورت گرفته است و با مقادیری که در منابع مختلف منتشر گردیده بود مقایسه شد.

علاوه بر اندازه‌های پایداری کوانتوس، زمان پایداری ترکیب‌های نیز مورد توجه قرار گرفت و بررسی طیف‌های چرمی نیز جهت شناسایی ترکیب‌های آنچه گرفت و شناسایی های صورت گرفته با استفاده از اطلاعات موجود در کتابخانه ترنتونیدا در کامپیوتر تایید گردید. درصد نسبی هر کدام از ترکیب‌های تشکیل دهنده اساس‌ها با توجه به سطح زیر محاسبه آن در طیف کرومانتوگرام بدست آمد است.

نتایج و بحث

بررسی تغییرات کمی اساس‌ها: بر اساس چندول شماره ۲ میزان درصد اساس اندام‌های مختلف گیاه تحت تأثیر پروتوهای فرابنفش در اغلب موارد کاهش یافته است. تنها در بذر گیاهانی که به مدت ۱۲ روز در زمان قبل از گلدهی گیاه پرتوهای UV شدند افزایش میزان اساس نسبت به گیاهان شاهد مشاهده گردید.

با توجه به کلیه تغییرات مشاهده شده در جدول شماره ۲، فعالیت‌های زمان انظر تولید اساس‌ها می‌توان مربوط به زمان می‌گذشته گیاه دانست. همچنین حساسیت‌های مرحله‌ای نسبت به پروتوهای UV مرحله قبل از گلدهی به نظر می‌رسد، چرا که سپس بیشترین تغییرات در مقدار درصد اساس گیاه شده است، اختلاف بین درصد اساس‌ها
<table>
<thead>
<tr>
<th>שם הפריט</th>
<th>50%</th>
<th>40%</th>
<th>30%</th>
<th>20%</th>
<th>10%</th>
<th>0%</th>
<th>שליטה</th>
</tr>
</thead>
<tbody>
<tr>
<td>שם הפריט</td>
<td>50%</td>
<td>40%</td>
<td>30%</td>
<td>20%</td>
<td>10%</td>
<td>0%</td>
<td>שליטה</td>
</tr>
<tr>
<td>שם הפריט</td>
<td>50%</td>
<td>40%</td>
<td>30%</td>
<td>20%</td>
<td>10%</td>
<td>0%</td>
<td>שליטה</td>
</tr>
</tbody>
</table>

שאלה:豕יתו לשאלה בחוקה חוקה קבוצתית בהスター ה-50% - 8. מחינת דיזכר
برگ گیاهان شاهد (2/19/1) و برگ گیاهان تیمار شده (4/78/1) در این مراحل بیشتر از زمان گلدهی است. همین طور اختلاف بین درصد اساس ساقه گیاهان شاهد و تیمار شده نیز در مرحله قبل از گلدهی بیشتر از زمان گلدهی و زمان رسیدن بذر است.

با گذشت پرتوهای فرابنفش میزان اساس در اغلب اندازه‌های گیاه کاهش یافته که با نتایجی که از درصد اساس دو گیاه نعنا و ریحان تحت تابش این پرتوها بدست آمده است مطابقت دارد (مجد، سرائی، مهریهور و میرزاتونی، 1377). در این غربال نتایج هر گیاه باشند. در انرسرخی چکاری مقادیر زیادی اساس می‌باشند. در گیاهان اساس در مداری ترشحی وجود دارد واین گیاه فاقد کرک می‌باشد. نوع ترکیب‌های اساس و محل است این نیز می‌تواند به میزان اساس تأثیر بگذارد. سنگ ترکیب‌های بسیاری از اندازه‌هایی که بیشتر تحت تأثیر پرتوهای UV قرار می‌گیرند. مانند کلروپلاستها بیشتر دستخوش تغییر می‌گردد. همچنین میزان جذب پرتوهای UV توسط ترکیب‌های مختلف متفاوت است که می‌تواند در ایجاد تغییرات تأثیر بگذارد.

بخش عمده اساس رازیانه را ترکیب‌هایی که ماهیت فنی در دارند مانند آنتانول و استرااتول تشکیل می‌دهد. این احتمال وجود دارد که گاهی درصد اساس، مربوط به تغییر مسیر پیش مانند ساخت ترکیب‌های اساسی بسیار، علیه اسیدهای آمیه آب، اتماتیک به پیش ساز مشترک ترکیب‌های فنی اساس و فلاونوئیدها هستند. بیشتر به سمت سنتر ترکیب‌های جاذب UV مانند فلاونوئیدها هدایت شوند.

بررسی تغییرات کفی اساسی به کمک تست‌های GC/MS و GC تشکیل دهنده اساسهای حاصل از بذر، ساقه (در دو مرحله رویشی) و ساقه (در سه مرحله رویشی)، در هر گروه گیاهان شاهد و تیمار دیده مورد شناسایی قرار گرفت. از آنجا که برای شناسایی ترکیب‌ها از ستون DB1 استفاده شده است پیک هایی که توسط
تحقیقات گیاهان دارویی و معطر ایران

این ستون برای ۳ ترکیب لیمونن، (٠٨ سیتاتول و آلفا فلاندرن) بدست آمده است بسیار نزدیک بوده که به درستی قابل تفکیک نبودند، بنابراین میزان این سه ترکیب همراه با مشخص limonen+1,8-Cineole هم گزارش گردیده اند که در کلیه جداول با عنوان گردیده است. در اینجا به بررسی تغییرات درصدی اساسیاها می‌پردازیم.

بجد: باتوجه به جدول شماره ۳ از مقایسه ترکیهای موجود در اساسیا بذر کلیه کرتشا چندین بر می‌آید که پرتوده تا زمان گلدهی گیاه (٠٧/٠۲ زر زرتوده) باعث افزایش تعداد ترکیهای در اساسیا بذر گیاه شده است و اکثر ترکیهای آن نیز در مقایسه با سایر کرتشا بیشترین درصد را نشان می‌دهند.

تاابع پرتوهای UV باعث کاهش ترانس آنتول در اساسیا حاصل از بذر گردده و بیشترین درصد آنتول با ٠٩/٠۲/٠۴ ٪ مربوط به شاهد بوده و پس از آن بذر کرتشا ۱۲ روز پرتوده در زمان قبل گلدهی درصدی معادل ٠٧/٠۲/٢٣ ٪ را نشان داده، کمترین درصد آنتول (٠٧/٠۲/٠۲ ٪) مربوط به اساسیا بذر کرتشا ۱۲ روز پرتوده تا زمان گلدهی گیاه می‌باشد. میزان درصد آنتول در کرتشا ۱۳۰ روز پرتوده تا زمان رسیدن بذر ٠٧/٠۲/٠۲/٠۴٪ بوده است.

فنجون تحت تأثیر پرتوهای UV افزایش یافته است، میزان استراگول نیز تحت تأثیر مدت زمان بیشتر پرتوده افزایش نشان داده است. تغییرات میزان درصد استراگول و فنجون تقریبا مشابه به یکدیگر و عكس تغییرات درصد ترانس آنتول می‌باشد، چرا که بیشترین درصد استراگول (٠٧/٠۴/٠۵ ٪) و فنجون (٠٧/٠٢/٢٣ ٪) در اساسیا بذرهای کرتشا ۲ می‌باشد و کمترین میزان استراگول (٠٧/٠۲/٠٣ ٪) در اساسیا بذر کرتشا ۱ و کمترین میزان فنجون (٠٧/٠٧/٠۵ ٪) در کرتشا شاهد مشاهده گردیده است. میزان درصد لیمونن + ٠٨ سیتاتول + آلفا فلاندرن اساسیا بذر تحت تأثیر پرتوهای فرابنفش افزایش داشته در بین اساسیاها بذر حاصل از ٣ کرت، ٠٧/٠۲/٠٢/٠٧ ٪ بیشترین میزان مخلوط لیمونن می‌باشد که در
اسانس کرت ۲ (۲۷ روز پرتوهای UV) دیده شده است. پس از آن اсанس بذرهاي کرت و کرت ۱ (به ترتیب ۱۲۰ روز و ۱۲ روز پرتوهای UV) و در نهایت شاهد به ترتیب با مخلوط لیمون مشاهده شده است.

گل: در اثر تابش پرتوهای UV میزان درصد ترانس آنتول در اسانس گل کاهش یافته و از ۴۰/۰۸ در اسانس گل شاهد به ۸۲/۰۵ در گیاهان تیمار دیده رسیده است و در عوض میزان سبیس آنتول در گیاهان به ۷۲ روز پرتوهای شده اندکی افزایش یافته، فنچل استات نیز به میزان ۱/۳۵٪ تکثیر گردیده است. همچنین از بررسی جدول شماره ۲ کاهش استراکول را از ۷۲/۲۲٪ (در شاهد) به ۴۳/۲۱٪ در اسانس گل گیاهان تیمار دیده و افزایش نیز را از ۵۸/۴۰٪ (در شاهد) به ۵۸/۷۵٪ در اسانس گل پرتوهای UV شده مشاهده می‌نماییم.

افراشی درصد مخلوط لیمون مشاهده شده است که در ترکیب‌های اسانس حاصل از گل تحت تأثیر پرتوهای فرابنفش دیده شد. در گیاهان تیمار شده تکثیر پاراسیمین را نیز مشاهده می‌کنیم، با توجه به اینکه پاراسیمین از دهیدروزناسیون لیمون مشاهده می‌شود تحت تابش پرتوهای UV چنین واکنشی رخ داده است. این اتفاق از جمله ترکیبهای است که در اسانس کلیه اندام‌ها دیده شده، ولی درصد آن در اسانس اندام‌های رویشی بیش از اندام‌های زایشی می‌باشد. تابش UV باعث افزایش درصد این ترکیب در اسانس گل و بذر گیاه گردیده است.
جدول شماره ۳- مقایسه درصد ترکیب‌های اساسی بذر گیاهان شاهد و نیم‌پردازه کربن‌های ۱و۲ در زمان بذردهی

<table>
<thead>
<tr>
<th>دارد درصد ترکیب</th>
<th>شاخص کوانتی</th>
<th>نام ترکیب</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳ T۳ ۳ T۲ ۳ T۱ ۳ C</td>
<td>۳۹۹ ۹۸۲ ۱۶۲ ۷۶</td>
<td>α - pinene</td>
<td>۱</td>
</tr>
<tr>
<td>-- -- --</td>
<td>۹۸۲</td>
<td>Sabinene</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۵۴ ۰/۵۰</td>
<td>۹۷۸</td>
<td>myrcene</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۲۷ ۰/۲۰</td>
<td>۱۰۰۹</td>
<td>p - cymene</td>
<td>۴</td>
</tr>
<tr>
<td>۶/۸۹ ۶/۳۷ ۶/۰۷</td>
<td>۱۰۲۴</td>
<td>1,8-cineole + limonene</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۵۷ ۰/۴۷</td>
<td>۱۰۴۸</td>
<td>γ - terpinene</td>
<td>۶</td>
</tr>
<tr>
<td>۱۰/۰۵ ۱۰/۵</td>
<td>۱۰۵۷</td>
<td>fenchone</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۲۲ ۰/۲۶</td>
<td>۱۱۱۶</td>
<td>camphor</td>
<td>۸</td>
</tr>
<tr>
<td>۴/۵۹ ۰/۳۵</td>
<td>۱۱۷۶</td>
<td>estragole</td>
<td>۹</td>
</tr>
<tr>
<td>۰/۱۵ ۰/۱۵</td>
<td>۱۳۱۳</td>
<td>cis – carveol</td>
<td>۱۰</td>
</tr>
<tr>
<td>۷۰/۱۲ ۷۰/۳۲</td>
<td>۱۳۵۰</td>
<td>trans – anethol</td>
<td>۱۱</td>
</tr>
<tr>
<td>-- ۰/۲۴</td>
<td>۱۳۳۰</td>
<td>piperitenone oxide</td>
<td>۱۲</td>
</tr>
<tr>
<td>۹۰/۹۹</td>
<td>۱۰۰/۱۰۰</td>
<td>کل</td>
<td></td>
</tr>
</tbody>
</table>
جدول شماره ۴- مقایسه درصد تركیهای اساسی گیاهان شاهد و تیمارشده در زمان گلدهی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>نام تركیب</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تركیب</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۲۵۰</td>
<td>α-Pinene</td>
<td>۱</td>
</tr>
<tr>
<td>۲/۱۷</td>
<td>Sabinene</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۷۸</td>
<td>Myrcene</td>
<td>۳</td>
</tr>
<tr>
<td>۱/۸۷</td>
<td>P-Cymene</td>
<td>۴</td>
</tr>
<tr>
<td>۱/۶۷</td>
<td>Limonene+1,8-Cineole</td>
<td>۵</td>
</tr>
<tr>
<td>۲/۳۱</td>
<td>γ-Terpinene</td>
<td>۶</td>
</tr>
<tr>
<td>۲/۷۶</td>
<td>Fenchone</td>
<td>۷</td>
</tr>
<tr>
<td>۱/۶۸</td>
<td>Estragol</td>
<td>۸</td>
</tr>
<tr>
<td>۱/۸۷</td>
<td>Cis-Carveole</td>
<td>۹</td>
</tr>
<tr>
<td>۱/۳۵</td>
<td>Fenchyl acetate</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱/۶۸</td>
<td>Cis-Anethol</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۱۱</td>
<td>Trans-Anethol</td>
<td>۱۲</td>
</tr>
<tr>
<td>۱/۶۵</td>
<td>Piperitenone oxide</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱/۳۵</td>
<td>Germacrene D</td>
<td>۱۴</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بررسی:
برگ در مرحله گلدهی- با نظر به جدول شماره ۵ از مقایسه تركیه‌های اساسی در برگ شاهد و تیمار در زمان قبل گلدهی، افزایش تعداد تركیب‌ها به ویژه تركیب‌های سرکوئینی تریپنی را در گیاهان تحت تیمار لامپ ۴۰ وات ماهی نمودیم. کاهش ترایس آنتال از ۵۸/۵۶ در شاهد به ۵۲/۳۰ در اساس برگ تیمار دیده و افزایش تركیه‌های استراگول، فنگون، لیمونن-۴۸/۱۴- سینشول-۴آلفا- فلاندرن و فنچل استات از دیگر تغییرات عدمه است که در اساس برگ گیاهان تحت تیمار به مدت ۱۲ روز،
دیده شد. کاهش ترکیب آلфа-پینین از ۲۰/۲۰ درصد در ساعت به ۵۱/۲۳ درصد در ساعت بیان گردیده بود. با توجه به اینکه آلфа-پینین در اثر تغییرات حرارتی به اوسمین تبدیل می‌گردد می‌توان احتمال داد که جنین واکنشی در گیاهان تحت تبیمار صورت گرفته باشد. در زمان گلدهی حجم زنده ترکیب‌های اساسی برگ را ترکیب‌های منو ترپینی حلقوی اسپینوزی در تشکیل داده است و تحت تأثیر پرتوهای فرابنشین سوزکونی ترپینها و منوتروپینهای هیدروکربنی، خطوط حلقوی به ترکیب‌های یاد شده اضافه گردیده است.

برگ در مرحله گلدهی- با توجه به جدول شماره ۶ تعداد ترکیب‌های اساسی برگ در زمان گلدهی در گیاهان پرتوهای دیده بوده شده بیش از نمونه های شاهد گردیده است که ناشی از اضافه شدن انواع مختلف منوتروپینها و سوزکونی ترپینها می‌باشد. افزایش ترنس - آنتل دراسات برگ تحت تبیمار از ۲۸/۲۹ در ساعت به ۴۲ در ساعت گردیده که حاکی از افزایش این ترکیب تحت تأثیر ۷۲ روز پرتوهای می‌باشد. علاوه بر آنتل، استراکول، فنچیل استات، میرسن، ترانس کارونول نیز در اساسی برگ گیاهان پرتوهای افزایش یافته‌اند.

در مرحله گلدهی مخلوط لیمونن در اساسی برگ گیاهان تحت تبیمار پرتوهای فرابنشین کاهش یافته است. میزان لیمونن و دوترکیب همراه آن در کل از ۵۴/۵۸ در برگ گیاهان شاهد به ۳۹/۴۷ در نمونه های تبیمار دیده است. کاهش آلфа - پینین از ۷۵/۳۵ در نمونه شاهد به ۴۳/۲۴ در نمونه های پرتوهای همراه با تشکیل ۳۷/۲۰/برگ مشاهده گردید.
جدول شماره 5- مقایسه درصد ترکیب‌های اساسی برگ گیاهان شاهد و تیمارشده در زمان قبل گلدهی

<table>
<thead>
<tr>
<th>درصد ترکیب</th>
<th>شاخص کوانت</th>
<th>نام ترکیب</th>
<th>وردهف</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار شاهد</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/51</td>
<td>4/20</td>
<td>929</td>
<td>α-Pinene</td>
</tr>
<tr>
<td>0/46</td>
<td>--</td>
<td>988</td>
<td>β-Pinene</td>
</tr>
<tr>
<td>1/1005</td>
<td>--</td>
<td>988</td>
<td>Myrcene</td>
</tr>
<tr>
<td>38/01</td>
<td>27/34</td>
<td>1024</td>
<td>Limonene+1,8-Cineole</td>
</tr>
<tr>
<td>0/28</td>
<td>--</td>
<td>1034</td>
<td>(E)-β-Ocimene</td>
</tr>
<tr>
<td>3/35</td>
<td>28/39</td>
<td>1047</td>
<td>Fenchone</td>
</tr>
<tr>
<td>4/39</td>
<td>--</td>
<td>1067</td>
<td>Terpinolene</td>
</tr>
<tr>
<td>3/31</td>
<td>1/35</td>
<td>1176</td>
<td>Estragol</td>
</tr>
<tr>
<td>1/25</td>
<td>0/32</td>
<td>1206</td>
<td>Trans-Carveole</td>
</tr>
<tr>
<td>--</td>
<td>0/75</td>
<td>1215</td>
<td>Cis-Carveole</td>
</tr>
<tr>
<td>4/44</td>
<td>2/32</td>
<td>1221</td>
<td>Fenchyl acetate</td>
</tr>
<tr>
<td>2/65</td>
<td>0/54</td>
<td>1265</td>
<td>Trans-Anethol</td>
</tr>
<tr>
<td>--</td>
<td>0/5</td>
<td>1266</td>
<td>Sabinyl acetate</td>
</tr>
<tr>
<td>--</td>
<td>4/24</td>
<td>1328</td>
<td>Piperitenone oxide</td>
</tr>
<tr>
<td>0/20</td>
<td>--</td>
<td>1378</td>
<td>β-Elemene</td>
</tr>
<tr>
<td>0/31</td>
<td>--</td>
<td>1420</td>
<td>Aromadendrene</td>
</tr>
<tr>
<td>0/67</td>
<td>--</td>
<td>1443</td>
<td>α-Humulene</td>
</tr>
<tr>
<td>1/65</td>
<td>--</td>
<td>1446</td>
<td>β-Farnesene</td>
</tr>
<tr>
<td>0/42</td>
<td>--</td>
<td>1507</td>
<td>Allo-aromadendrene</td>
</tr>
<tr>
<td>0/25</td>
<td>--</td>
<td>1563</td>
<td>γ-Muurolene</td>
</tr>
<tr>
<td>1/56</td>
<td>--</td>
<td>1764</td>
<td>Germacrene D</td>
</tr>
<tr>
<td>0/12</td>
<td>--</td>
<td>1490</td>
<td>γ-Cadinene</td>
</tr>
<tr>
<td>0/25</td>
<td>--</td>
<td>1637</td>
<td>γ-Eudesmol</td>
</tr>
<tr>
<td>1/84</td>
<td>--</td>
<td>1872</td>
<td>Farnesol isomer</td>
</tr>
<tr>
<td>1/71</td>
<td>--</td>
<td>1833</td>
<td>(E,E)-Farnesyl acetate</td>
</tr>
<tr>
<td>تیمار</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/51</td>
<td>4/20</td>
<td>929</td>
<td>α-Pinion</td>
</tr>
<tr>
<td>0/32</td>
<td>--</td>
<td>988</td>
<td>β-Pinene</td>
</tr>
<tr>
<td>1/1005</td>
<td>--</td>
<td>988</td>
<td>Myrcene</td>
</tr>
<tr>
<td>38/01</td>
<td>27/34</td>
<td>1024</td>
<td>Limonene+1,8-Cineole</td>
</tr>
<tr>
<td>0/28</td>
<td>--</td>
<td>1034</td>
<td>(E)-β-Ocimene</td>
</tr>
<tr>
<td>3/35</td>
<td>28/39</td>
<td>1047</td>
<td>Fenchone</td>
</tr>
<tr>
<td>4/39</td>
<td>--</td>
<td>1067</td>
<td>Terpinolene</td>
</tr>
<tr>
<td>3/31</td>
<td>1/35</td>
<td>1176</td>
<td>Estragol</td>
</tr>
<tr>
<td>1/25</td>
<td>0/32</td>
<td>1206</td>
<td>Trans-Carveole</td>
</tr>
<tr>
<td>--</td>
<td>0/75</td>
<td>1215</td>
<td>Cis-Carveole</td>
</tr>
<tr>
<td>4/44</td>
<td>2/32</td>
<td>1221</td>
<td>Fenchyl acetate</td>
</tr>
<tr>
<td>2/65</td>
<td>0/54</td>
<td>1265</td>
<td>Trans-Anethol</td>
</tr>
<tr>
<td>--</td>
<td>0/5</td>
<td>1266</td>
<td>Sabinyl acetate</td>
</tr>
<tr>
<td>--</td>
<td>4/24</td>
<td>1328</td>
<td>Piperitenone oxide</td>
</tr>
<tr>
<td>0/20</td>
<td>--</td>
<td>1378</td>
<td>β-Elemene</td>
</tr>
<tr>
<td>0/31</td>
<td>--</td>
<td>1420</td>
<td>Aromadendrene</td>
</tr>
<tr>
<td>0/67</td>
<td>--</td>
<td>1443</td>
<td>α-Humulene</td>
</tr>
<tr>
<td>1/65</td>
<td>--</td>
<td>1446</td>
<td>β-Farnesene</td>
</tr>
<tr>
<td>0/42</td>
<td>--</td>
<td>1507</td>
<td>Allo-aromadendrene</td>
</tr>
<tr>
<td>0/25</td>
<td>--</td>
<td>1563</td>
<td>γ-Muurolene</td>
</tr>
<tr>
<td>1/56</td>
<td>--</td>
<td>1764</td>
<td>Germacrene D</td>
</tr>
<tr>
<td>0/12</td>
<td>--</td>
<td>1490</td>
<td>γ-Cadinene</td>
</tr>
<tr>
<td>0/25</td>
<td>--</td>
<td>1637</td>
<td>γ-Eudesmol</td>
</tr>
<tr>
<td>1/84</td>
<td>--</td>
<td>1872</td>
<td>Farnesol isomer</td>
</tr>
<tr>
<td>1/71</td>
<td>--</td>
<td>1833</td>
<td>(E,E)-Farnesyl acetate</td>
</tr>
</tbody>
</table>
جدول شماره ۲- مقایسه درصد ترکیب‌های اساسی برگ گیاهان شاهد و تیمار شده در زمان گلدهی

<table>
<thead>
<tr>
<th>درصد ترکیب</th>
<th>شاخص کواست</th>
<th>نام ترکیب</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمکت</td>
<td>شاهد</td>
<td>۴/۰۵</td>
<td>۹۲۹</td>
</tr>
<tr>
<td>نیمکت</td>
<td>--</td>
<td>۲/۷</td>
<td>۹۸</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۱/۴۱</td>
<td>۹۸</td>
<td>Myrcene</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۱/۸۹</td>
<td>۱/۸۲</td>
<td>۱۰۴</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۲/۳۰</td>
<td>۲/۰۷</td>
<td>۱۰۷</td>
</tr>
<tr>
<td>نیمکت</td>
<td>--</td>
<td>۷۶</td>
<td>Terpinolene</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۱/۷</td>
<td>۱/۷</td>
<td>۱۱۵</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۱/۷</td>
<td>۱/۸</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>نیمکت</td>
<td>--</td>
<td>۱/۴۳</td>
<td>۱۲۱</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۱/۸</td>
<td>۱/۵۲</td>
<td>۱۲۴</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۲/۰۵</td>
<td>۲/۵</td>
<td>۱۲۶</td>
</tr>
<tr>
<td>نیمکت</td>
<td>۲۶/۴۴</td>
<td>۲۸/۲۹</td>
<td>۱۴۷</td>
</tr>
<tr>
<td>نیمکت</td>
<td>--</td>
<td>--</td>
<td>۱۸۳</td>
</tr>
</tbody>
</table>

ساقه:

با وجود اینکه درصد اساس حاصل از ساقه نسبت به سایر اندام‌های گیاه کمتر بود، اما تعداد ترکیب‌های موجود در اساس ساقه بیش از بقیه بوده است.

ساقه در مرحله قبل از گلدهی- در جدول شماره ۲ درصد ترکیب‌های اساس ساقه شاهد و تیمار دیده پس از ۱۲ روز پرتویی مورد مقایسه قرار گرفت. نتیجه چنین نشان داد که در اساس ساقه گیاهان تحت تیمار، افزايش ترانس - آنتول، فنچون و
افزایش ترانس-آنتول از 99/77% در شاهد به 97/67% در اساسن ساقه تیمار دیده، همراه با خذف سیس-آنتول که در نمونه شاهد 48/27% بوده است یکی از تغییرات ایجاد شده است، ضمن اینکه در اساتذه گیاهان تحت تیمار 26/78% خذف است. مقدار این تغییرات در 28/2% در اساسن شاهد به 85/6% در اساسن نمونه های تیمار دیده رشدی اما 26/74%، اسپریاگول موجود در اساسن ساقه گیاهان شاهد در اساسن گیاهان تحت تیمار حذف گردیده است. افزایش میزان مخلوط لیموننی از 56/4% در اساسن ساقه شاهد به 90/4% در گیاهان پرتوده شده را می‌توان مشاهده نمود. تنوع ترکیب‌های در ساقه زاینده می‌باشد و تغییرات در همه انواع مختلف متونی‌ها و سروکوئی ترپین‌ها مشاهده می‌شود.

ساقه در مرحله گلدهی- در این مرحله از رشد گیاه، کاهش شدید تعادل ترکیب‌های موجود در اساسن ساقه را در گیاهان پرتودیده در مقایسه با گیاهان شاهد مشاهده می‌نماییم (جدول شماره 8). میزان درصد ترانس-آنتول در اساسن ساقه گیاهانی که روز تحت تیمار بودند 49/54% می‌باشد که در مقایسه با شاهد به میزان 20/44% از خود افزایش نشان داده است و در عوض درصد سیس-آنتول با کاهش از 13/34% در اساسن ساقه شاهد به 87/64% در اساسن ساقه تیمار رشدی است. ضمن اینکه اسپریاگول در اساسن ساقه شاهد به 67/26% فنچیل استات که در نمونه شاهد وجود ندارد، از دیگر موارد قابل مشاهده در اساسن ساقه در زمان گلدهی، می‌توان به کاهش فنچیل و اسپریاگول در اساسن گیاهان تحت تیمار اشاره نمود. از دیگر ترکیب‌های کاهش یافته تحت تاثیر پرتوده فرابنفش، آلفا- پینین می‌باشد که از 15/5% در شاهد به 26/3% در تیمار رشدی است. اساسن ساقه پرتوده شده دارای 78/2% مخلوط لیمونن و اساسن
تحقیقات گیاهان دارویی و معطر ایران

ساقه شاهد دارای ۲۳/۵۶۰٪ از این ترکیب‌ها می‌باشد که افزایش مخلوط لیمونن را تحت تاثیر پرتوهای فرابنفش در ساقه و در زمان گلدهی نشان می‌دهد. تعداد سکوتویی ترپنها در ساقه گیاهان تیمار دیده به شدت کاهش یافته است.

ساقه در زمان رسیدن بذر - با توجه به جدول شماره ۹ میزان ترکیب ترانس-آنتول در اساس ساقه در زمان رسیدن بذر به سیب‌ارک کم شده، ولی تحت تاثیر ۱۳۰ روز پرتوهای این مقدار از ۲۹/۰٪ در نمونه شاهد به ۲۴/۰٪ در اساس ساقه گیاهان تیمار دیده افزایش می‌یابد. استراگول نیز تحت تأثیر پرتوهای فرابنفش افزایش یافته، اما مقدار بسیار کم فنوجون و میزان ۲۷/۵۸٪ آلفا- پنی در اساس ساقه شاهد تحت تأثیر پرتوهای فرابنفش حذف شده اند.

اما مخلوط لیمونن از جمله ترکیب‌های است که در زمان رسیدن بذر در اساس ساقه شاهد درصد زیادی معادل ۲۴/۵۰٪ داشته و تحت تأثیر پرتوهای فرابنفش به ۲۱/۰۷٪ تقلیل یافته است.

یکی دیگر از ترکیب‌هایی که تحت تاثیر ۱۳۰ روز پرتوهای در اساس ساقه کاهش یافته فنجیل استانت می‌باشد که از ۲۳/۵۶٪ در اساس ساقه شاهد به ۱۸/۰۷٪ در اساس ساقه تیمار رسیده است. فرم سیس و ترانس - کاروتئول و نیز ترانس - وربنیل استات از جمله ترکیب‌های هستند که تحت تاثیر پرتوهای فرابنفش به شدت افزایش یافته اند.

مقایسه تغییرات ترکیب‌های اساس ساقه گیاهان در زمان رسیدن بذر - از مقایسه اساس ساقه های شاهد و سه کرتی که تحت تاثیر پرتوهای ۷۱ ابتدای در زمان رسیدن بذر(جدول شماره ۹) چنین نتیجه می‌گیریم که پرتوهای با مدت زمان متفاوت ۲۲ روز و ۲۱۰ روز بر نوع و میزان ترکیب‌های اساس تاثیر داشته است. پرتوهای فرابنفش به ویژه با بیشترین مدت تاثیش، به طور عمده باعث افزایش تعداد سکوتویی ترپنها می‌شود. اساس ساقه گیاهان شاهد با ۲۹٪ ترانس-آنتول نشان می‌دهد.
بررسی تأثیر پروتوهای فرابینفیش بر کمیت و کیفیت اساسی گیاه راژیانه

که در این مرحله مقدار ترانس - آنتول در ساقه به شدت کاهش می‌یابد. اما پروتوهای فرابینفیش در هر ۳ کرت پروتوهای شده باعث افزایش میزان ترانس - آنتول در ساقه در زمان رسیدن بذر گردیده است. این افزایش در کرت ۲ (که تا زمان گلدهی گیاه پروتوهای صورت گرفته) با ۱۹/۷۷٪ ترانس - آنتول بیشتر سایرین بوده و در بین سه کرت پروتوهای شده کرت ۳ با ۱۳۰ روز پروتوهای به ۴۴٪ آنتول کمترین میزان افزايش را نشان داده است.

در این مرحله پروتوهای UV به‌طورکلی باعث حذف کامل فنجون شده اندازه گیری در اساس ساقه شهره نیز تنها ۲۸٪ فنجون وجود دارد. استراکول نیز در ساقه و به ویژه در زمان رسیدن بذر کم و تحت تأثیر مدت طولانی تر پروتوهای انگلکی افزايش یافته است. مخلوط لیمونن در ساقه و در زمان رسیدن بذر درصد بالایی را نشان داد به‌طوری که در شهره ای‌با ۵۵/۳٪ بیشترین میزان این ترکیب‌ها را مشاهده نموده و این ترکیب‌ها نسبت به پروتوهای UV حساس هستند و به تدریج با افزایش مدت پروتوهای از مقدار آنها کم می‌شود به‌طوری که در کرت ای ۱۲ روز پروتوهای در این زمان ۰/۰۹٪ در کرت ۲، ۲۵٪ و در کرت ۳ با ۱۳۰ روز پروتوهای ۱۷/۲۵٪ لیمونن وجود دارد تحت تأثیر مدت زمان طولانی تابش پروتوهای فرابینفیش آلفا بینن کاهش ویا حذف می‌گردد، و لی مدت کم تابش باعث افزایش این ترکیب نسبت به شهره گشته است. (اساس ساقه شهره ۱/۶۸٪، کرت ۱ ۸/۷۹٪، کرت ۲ ۲۵/۱۷٪ کریت ۳ ۲/۷۹٪)

یکی از تأثیرات پروتوهای UV سنتز ترانس - آنتول در بذر، گل و برگ در زمان قبل گلدهی کاهش یافته، اما در برگ در زمان گلدهی وسایل های تحت تیمار سنتز این ماده افزايش داشته است.

درصد فنجون تحت تابش پروتوهای فرابینفیش در بذر، گل، برگ و ساقه قبل گلدهی افزايش یافته است، ولی کاهش درصد این ترکیب در اساس برگ و ساقه زمان گلدهی
کاهش و افزایش در سطح ساقه در زمان رسیدن بذر جذب گردیده است. البته در این مرحله
درصد فنجون در ساقه نمونه های شاهد نیز بیساب کم است. در میان اندام‌های مختلف،
بذر و برق در زمان نابه کلی و هم‌مرتبه کلی و اندام‌های دارند. نظر به اینکه
ترانس‌آنتون طعمی شیرین داشته و خواص بسیاری به آن نسبت داده می‌شود و
همچنین با توجه به اینکه فنجون ترکیبی تلخ مزه است کاهش ترنس آنتون و افزایش
فنجون در بذر و برق تحت تأثیر پرتوهای فرابنفش باعث کاهش کیفیت و خواص برق
و بذر گیاه می‌گردد.

استرگاول از دیگر ترکیب‌های اصلی گیاه است که تحت تأثیر پرتوهای فرابنفش در
اسانس‌های بذر و برق در زمان‌های قبل گلدهی، گلدهی و اسانت ساقه در زمان بذرده‌هی
افراشی پاکشته است. اسانت حاصل از گل و ساقه زمان گلدهی گیاهان پرتوهای کاهش
درصد استرگاول را نسبت به نمونه های شاهد نشان داده و اسانت ساقه قبل از گلدهی
تحت تیمار نیز فاقد استرگاول است.

با تبادل پرتوهای فرابنفش در سطح مجموع ترکیب‌های لیمونن + 1، 8- سینتول + بنت-8
فلاندردن در بذر و گل، برق قبل از گلدهی و ساقه در زمان قبل گلدهی و گلدهی افراشی
پاکشته است و در اسانت ساقه برق زمان گلدهی نمونه های تحت تیمار کاهش و در ساقه
زمان بذرده‌هی به شدت کاهش پاکشته است. البته با عدم تفکیک کامل این سه ترکیب نمی
توان به طور دقیق تغییرات هر یک را بیان نمود. با توجه به اثرات ضد میکرو‌بی‌یا
و 8- سینتول افراشی این ترکیب‌ها تحت تأثیر پرتوهای UV منحنی مورد استفاده قرار
گیرد. در کل پرتوهای فرابنفش بر میزان کل این 3 ترکیب بیشتر اثر افراشی داشته‌اند،
اين در حالی است که در برسی‌های که پردازش اسانت نعناع تحت تأثیر همین پرتوها
توسط مجد، رضایی و مهرور (1377) صورت گرفته لیمونن کاهش یافته است.

تحت تأثیر پرتوهای فرابنفش از بین ترکیب‌های فنل‌ه، ترانس-آنتون، در اثر موارد
کاهش یافته، ولی استرگاول در اثر موارد افراشی داشته است، که افراشی استرگاول با
نتایجی که مجد، رضائی و میرزاتونی (۱۳۷۷) از تأثیر پرتوهای فرابنفش بر گیاه ریحان بدست آورده‌اند (میرزا و همکاران، ۱۳۷۵)، مطابقت داشته است، ضمن اینکه فنچون که ماهیتی آلدین‌هیدری دارد تحت تأثیر لامپ ۴۰ وات در اساس ریحان افزایش یافته که این نتیجه نیز با نتایج حاصل بر روی اساس رازیانه مشابه می‌باشد. همچنین تحت تأثیر پرتوهای فرابنفش در اندام‌هایی مانند برگ و ساقه رازیانه افزایش سرکوئی ترین‌ها را به ویژه در مرحله قبل گلدهی مشاهده نمودیم. مشابه همین امر در اساس نعناع و ریحان نیز مشاهده گردیده است.

سیاست‌گذاری

بدین وسیله از مسئولان محترم مؤسسه تحقیقات جنگل‌ها و مراتع به ویژه اعضای محترم بخشن تحقیقات گیاهان دارویی و محصولات فرعی و کسایی که در انجام این تحقیق ما را یاری نمودند کمال تشکر و قدردانی را داریم.
جدول شماره 7 - مقایسه درصد تركیب‌های اساسی ساقه گیاهان شاهد و تجاری در زمان قبل گلدهی

<table>
<thead>
<tr>
<th>درصد تركیب</th>
<th>شاخص کوانس</th>
<th>نام تركیب</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/72</td>
<td>0/18</td>
<td>α-Pinene</td>
<td>1</td>
</tr>
<tr>
<td>0/10</td>
<td>0/15</td>
<td>Myrcene</td>
<td>2</td>
</tr>
<tr>
<td>0/90</td>
<td>0/36</td>
<td>Limonene+1,8-Cineole</td>
<td>3</td>
</tr>
<tr>
<td>0/15</td>
<td>0/28</td>
<td>γ-Terpinene</td>
<td>4</td>
</tr>
<tr>
<td>0/85</td>
<td>0/24</td>
<td>Fenchone</td>
<td>5</td>
</tr>
<tr>
<td>0/72</td>
<td>0/22</td>
<td>Terpinolene</td>
<td>6</td>
</tr>
<tr>
<td>0/74</td>
<td>0/76</td>
<td>Estragol</td>
<td>7</td>
</tr>
<tr>
<td>0/33</td>
<td>0/50</td>
<td>Trans-Computer</td>
<td>8</td>
</tr>
<tr>
<td>0/78</td>
<td>0/78</td>
<td>Fenchyl acetate</td>
<td>9</td>
</tr>
<tr>
<td>0/83</td>
<td>0/30</td>
<td>Cis-Anethol</td>
<td>10</td>
</tr>
<tr>
<td>3/00</td>
<td>0/08</td>
<td>Trans-Cinnamaldehyde</td>
<td>11</td>
</tr>
<tr>
<td>0/78</td>
<td>0/78</td>
<td>Trans-Verbena acetate</td>
<td>12</td>
</tr>
<tr>
<td>0/84</td>
<td>0/17</td>
<td>Trans-Anethol</td>
<td>13</td>
</tr>
<tr>
<td>0/92</td>
<td>0/14</td>
<td>Piperitone oxide</td>
<td>14</td>
</tr>
<tr>
<td>0/16</td>
<td>0/18</td>
<td>Piperitenone oxide</td>
<td>15</td>
</tr>
<tr>
<td>0/55</td>
<td>0/16</td>
<td>β-Gurjunene</td>
<td>16</td>
</tr>
<tr>
<td>0/05</td>
<td>0/41</td>
<td>Trans-α-Bergamotene</td>
<td>17</td>
</tr>
<tr>
<td>0/33</td>
<td>0/16</td>
<td>Aromadendrene</td>
<td>18</td>
</tr>
<tr>
<td>0/10</td>
<td>0/61</td>
<td>α-Humulene</td>
<td>19</td>
</tr>
<tr>
<td>0/05</td>
<td>0/31</td>
<td>Allo-aromadendrene</td>
<td>20</td>
</tr>
<tr>
<td>0/33</td>
<td>0/15</td>
<td>β-Murolene</td>
<td>21</td>
</tr>
<tr>
<td>0/25</td>
<td>0/90</td>
<td>Germacrene D</td>
<td>22</td>
</tr>
<tr>
<td>0/22</td>
<td>0/90</td>
<td>γ-Cadinene</td>
<td>23</td>
</tr>
<tr>
<td>0/18</td>
<td>0/36</td>
<td>Caryophyllene oxide</td>
<td>24</td>
</tr>
<tr>
<td>0/10</td>
<td>0/36</td>
<td>Vridiflorol</td>
<td>25</td>
</tr>
<tr>
<td>0/18</td>
<td>0/36</td>
<td>Farnesol isomer</td>
<td>26</td>
</tr>
<tr>
<td>0/18</td>
<td>0/36</td>
<td>Trans-Farnesol</td>
<td>27</td>
</tr>
<tr>
<td>0/18</td>
<td>0/36</td>
<td>Benzyl benzoate</td>
<td>28</td>
</tr>
<tr>
<td>0/12</td>
<td>0/36</td>
<td>(E,E)-Farnesyl acetate</td>
<td>29</td>
</tr>
</tbody>
</table>
جدول شماره 8- مقایسه درصد ترکیب‌های اساسی ساقه گیاهان شاهد و تیمار شده، در زمان گلدهی

| تیمار | درصد ترکیب | شاخه | کواتس | نام ترکیب | رده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3/28</td>
<td>5/26</td>
<td>929</td>
<td>α-Pinene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0/15</td>
<td>943</td>
<td>Camphene</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0/77</td>
<td>952</td>
<td>Sabinene</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0/41</td>
<td>958</td>
<td>β-Pinene</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0/83</td>
<td>498</td>
<td>Myrcene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>0/77</td>
<td>1009</td>
<td>P-Cymene</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>82/87</td>
<td>28/60</td>
<td>1024</td>
<td>Limonene+1,8-Cineole</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0/80</td>
<td>1032</td>
<td>(E)-β-Ocimene</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>0/19</td>
<td>1087</td>
<td>γ-Terpinene</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0/83</td>
<td>1087</td>
<td>Fenchone</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0/53</td>
<td>1076</td>
<td>Terpinolene</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0/15</td>
<td>1162</td>
<td>α-Terpineol</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0/15</td>
<td>1176</td>
<td>Estragol</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0/7</td>
<td>1206</td>
<td>Trans--Carveole</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0/7</td>
<td>1211</td>
<td>Fenchyl acetate</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0/7</td>
<td>1224</td>
<td>Cis--Anethol</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0/42</td>
<td>1230</td>
<td>Trans-Cinnamaldehyde</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0/54</td>
<td>1265</td>
<td>Trans--Anethol</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0/12</td>
<td>1338</td>
<td>Piperitenone oxide</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0/8</td>
<td>1378</td>
<td>β--Elemene</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0/20</td>
<td>1432</td>
<td>α--Humulene</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0/10</td>
<td>1466</td>
<td>β--Farnesene</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0/12</td>
<td>1483</td>
<td>Allo-aromadendrene</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0/12</td>
<td>1486</td>
<td>γ--Muurolene</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0/3</td>
<td>1486</td>
<td>Germacrene D</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0/14</td>
<td>1517</td>
<td>Elemol</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0/15</td>
<td>1550</td>
<td>Spathulenol</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0/8</td>
<td>1581</td>
<td>Viridiflorol</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0/11</td>
<td>1611</td>
<td>Cedrol</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0/10</td>
<td>1624</td>
<td>α-Cadinol</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0/13</td>
<td>1677</td>
<td>γ-Eudesmol</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0/10</td>
<td>1677</td>
<td>Farnesol isomer</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
جدول شماره 9- مقایسه درصد ترکیب‌های اساسی ساقه گیاهان شاهد و گیاهان نیمارشده

<table>
<thead>
<tr>
<th>درصد ترکیب</th>
<th>شاخص کوانتس</th>
<th>نام ترکیب</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Thujone</td>
<td>917</td>
<td>α-Pinene</td>
<td>2</td>
</tr>
<tr>
<td>Sabinene</td>
<td>929</td>
<td>β-Pinene</td>
<td>4</td>
</tr>
<tr>
<td>Myrcene</td>
<td>988</td>
<td>P-Cymene</td>
<td>6</td>
</tr>
<tr>
<td>Limonene+1,8-Cineole</td>
<td>1024</td>
<td>(E)-β-Ocimene</td>
<td>8</td>
</tr>
<tr>
<td>γ-Terpinene</td>
<td>1048</td>
<td>Fenchone</td>
<td>9</td>
</tr>
<tr>
<td>Terpinolene</td>
<td>1058</td>
<td>α-Thujone</td>
<td>12</td>
</tr>
<tr>
<td>Cis-Verbanel</td>
<td>1111</td>
<td>Camphor</td>
<td>14</td>
</tr>
<tr>
<td>Estragol</td>
<td>1176</td>
<td>dihydro Carveol</td>
<td>16</td>
</tr>
<tr>
<td>Trans-Carveole</td>
<td>1156</td>
<td>Cis-Carveole</td>
<td>18</td>
</tr>
<tr>
<td>Fenchyl acetate</td>
<td>1171</td>
<td>Cis-Anethol</td>
<td>20</td>
</tr>
<tr>
<td>Trans-Cinnamaldehyde</td>
<td>1124</td>
<td>Trans-Verbenyl acetate</td>
<td>22</td>
</tr>
<tr>
<td>Trans-Anethol</td>
<td>1150</td>
<td>Bornyl acetate</td>
<td>24</td>
</tr>
<tr>
<td>Sabinyl acetate</td>
<td>1128</td>
<td>Methyl acetate</td>
<td>26</td>
</tr>
<tr>
<td>Terpinene-4-yl acetate</td>
<td>1188</td>
<td>Myrtenyl acetate</td>
<td>28</td>
</tr>
<tr>
<td>α-Terpiney acetate</td>
<td>1131</td>
<td>Piperitenone</td>
<td>30</td>
</tr>
<tr>
<td>درصد ترکیب</td>
<td>شاخص کواتس</td>
<td>نام ترکیب</td>
<td>ترمیم</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/50</td>
<td>---</td>
<td>3/21</td>
<td>69/0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>0/20</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>0/22</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/50</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/52</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>0/22</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/52</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/33</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/44</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1/55</td>
<td>---</td>
<td>---</td>
<td>34/0</td>
</tr>
<tr>
<td>0/55</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/22</td>
<td>---</td>
<td>---</td>
<td>21/0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/38</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/22</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/17</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0/20</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7/200</td>
<td>7/200</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>
منابع

- امید بیگی، رضا، 1374. رهایافتهای تولیدات و فراوری گیاهان دارویی. انتشارات طراحان نشر.
- زرگری، علی، 1367. گیاهان دارویی. جلد دوم.
- مهری، شهین، 1377. تأثیر پرتوهای فرابنفش بر ساختار تشريحي و تکوني وکمیت وکیفیت اساس گیاه نعنا. پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی.
- میرزا مهدی، فاطمه سفید کن، لطیفه احمدی، 1375. اساسهای طبیعی استخراج وشناسایی کمی وکیفی کاربرد آنها.
- میرزا اولتی، آناهید، 1377. اثر پرتوهای فرابنفش بر ساختار تشريحي و تکوني وکمیت وکیفیت اساس گیاه ریحان. پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی.

Study of the effect of ultraviolet radiations on quantity and quality of the essential oils of Fennel (*Foeniculum vulgare* Mill.) in vegetative phases

M. B. Rezaee¹, K. Jaimand¹, A. Sharifi Ashorabadi, M. Maddah² and A. Majd³

Abstract

Ozone layer depletion has increased ultraviolet-B radiation influence. As this radiation has harmful effects on plants, this research studies the essential oils quality and quantity changes of Fennel all affected by high ultraviolet radiation emanated form a 40-watt lamp in the field conditions in three phases: before flowering, flowering and after the formation of seed.

Fennel is one of the precious medicinal plants widely used in pharmacy, purfurum, cometic and hygienic industries as well as food industries. The seeds or fruits of this plant have so much essential oils that medicinal properties of the plant are attributed tothis essential oils.

The water and steam distilled (Long & Kaiser) essential oils of seeds, flowers, leaves and stems of Fennel in different vegetative phases was analyzed by GC and GC/MS.

The amount of essential oils in leaf, stem, flower and seeds has been decreased in the most of phases and essential oils' components changed under ultraviolet radiations. The amount of Trans-anthole, which is the most important compound of this essential oil, has been decreased in the seed and flower of under treatment plants but this compound has been increased in the stem in spite of less amount of essential oils in this organg, this compound has been decreased in leaf before flowering phase but incraesed in flowing period. The other main compounds, Estragol, Fenchon and Limonene have been increased, in most cases. This results indicates this plants is very senstive to ultraviolet radiations.

Key word: *Foeniculum vulgare* Mill., Ultraviolet radiation, anthole and Essential oil composition.

1 - Research Institute of Forests and Rangelands, P.O. Box 13185-116, Tehran, Iran.
2 - Azad University Tehran
3 - Azad University, Tehran.